Fan Yang;Haoqi Li;Maolong Lv;Jiangping Hu;Qingrui Zhou;Bijoy K. Ghosh
{"title":"Enhancing Safety in Nonlinear Systems: Design and Stability Analysis of Adaptive Cruise Control","authors":"Fan Yang;Haoqi Li;Maolong Lv;Jiangping Hu;Qingrui Zhou;Bijoy K. Ghosh","doi":"10.1109/TIV.2024.3388425","DOIUrl":null,"url":null,"abstract":"The safety of autonomous driving systems, particularly self-driving vehicles, remains of paramount concern. These systems exhibit affine nonlinear dynamics and face the challenge of executing predefined control tasks while adhering to state and input constraints to mitigate risks. However, achieving safety control within the framework of control input constraints, such as collision avoidance and maintaining system states within secure boundaries, presents challenges due to limited options. In this article, we introduce a novel approach to address safety concerns by transforming safety conditions into control constraints with a relative degree of 1. This transformation is facilitated through the design of control barrier functions, enabling the creation of a safety control system for affine nonlinear networks. Subsequently, we formulate a robust control strategy that incorporates safety protocols and conduct a comprehensive analysis of its stability and reliability. To illustrate the effectiveness of our approach, we apply it to a specific problem involving adaptive cruise control. Through simulations, we validate the efficiency of our model in ensuring safety without compromising control performance. Our approach signifies significant progress in the field, providing a practical solution to enhance safety for autonomous driving systems operating within the context of affine nonlinear dynamics.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 11","pages":"6803-6813"},"PeriodicalIF":14.0000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10499717/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The safety of autonomous driving systems, particularly self-driving vehicles, remains of paramount concern. These systems exhibit affine nonlinear dynamics and face the challenge of executing predefined control tasks while adhering to state and input constraints to mitigate risks. However, achieving safety control within the framework of control input constraints, such as collision avoidance and maintaining system states within secure boundaries, presents challenges due to limited options. In this article, we introduce a novel approach to address safety concerns by transforming safety conditions into control constraints with a relative degree of 1. This transformation is facilitated through the design of control barrier functions, enabling the creation of a safety control system for affine nonlinear networks. Subsequently, we formulate a robust control strategy that incorporates safety protocols and conduct a comprehensive analysis of its stability and reliability. To illustrate the effectiveness of our approach, we apply it to a specific problem involving adaptive cruise control. Through simulations, we validate the efficiency of our model in ensuring safety without compromising control performance. Our approach signifies significant progress in the field, providing a practical solution to enhance safety for autonomous driving systems operating within the context of affine nonlinear dynamics.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.