Hussein A. Kazem , Miqdam T. Chaichan , Ali H.A. Al-Waeli , K. Sopian , Waheeb E. Alnaser , Lawrence Kazmerski , Naser W. Alnaser
{"title":"A review of photovoltaic/thermal (PV/T) incorporation in the hydrogen production process","authors":"Hussein A. Kazem , Miqdam T. Chaichan , Ali H.A. Al-Waeli , K. Sopian , Waheeb E. Alnaser , Lawrence Kazmerski , Naser W. Alnaser","doi":"10.1016/j.gloei.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Integrating the photovoltaic/thermal (PV/T) system in green hydrogen production is an improvement in sustainable energy technologies. In PV/T systems, solar energy is converted into electricity and thermal energy simultaneously using hot water or air together with electricity. This dual use saves a significant amount of energy and officially fights greenhouse gases. Different cooling techniques have been proposed in the literature for improving the overall performance of the PV/T systems; employing different types of agents including nanofluids and phase change materials. Hydrogen is the lightest and most abundant element in the universe and has later turned into a flexible energy carrier for transportation and other industrial applications. Issues, including the processes of Hydrogen manufacturing, preservation as well as some risks act as barriers. This paper provides an analysis of several recent publications on the efficiency of using PV/T technology in the process of green hydrogen production and indicates the potential for its increased efficiency as compared to conventional systems that rely on fossil fuels. Due to the effective integration of solar energy, the PV/T system can play an important role in the reduction of the levelized cost of hydrogen (LCOH) and hence play an important part in reducing the economic calculations of the decarbonized energy system.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 3","pages":"Pages 363-393"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating the photovoltaic/thermal (PV/T) system in green hydrogen production is an improvement in sustainable energy technologies. In PV/T systems, solar energy is converted into electricity and thermal energy simultaneously using hot water or air together with electricity. This dual use saves a significant amount of energy and officially fights greenhouse gases. Different cooling techniques have been proposed in the literature for improving the overall performance of the PV/T systems; employing different types of agents including nanofluids and phase change materials. Hydrogen is the lightest and most abundant element in the universe and has later turned into a flexible energy carrier for transportation and other industrial applications. Issues, including the processes of Hydrogen manufacturing, preservation as well as some risks act as barriers. This paper provides an analysis of several recent publications on the efficiency of using PV/T technology in the process of green hydrogen production and indicates the potential for its increased efficiency as compared to conventional systems that rely on fossil fuels. Due to the effective integration of solar energy, the PV/T system can play an important role in the reduction of the levelized cost of hydrogen (LCOH) and hence play an important part in reducing the economic calculations of the decarbonized energy system.