Zehong Liu , Jinxuan Zhang , Zedong Zhang , Yuanbing Zhou , Jinyu Xiao , Jinming Hou , Yu Ni
{"title":"Power-to-hydrogen-and-methanol model based on collaborative optimization of energy flow and material flow","authors":"Zehong Liu , Jinxuan Zhang , Zedong Zhang , Yuanbing Zhou , Jinyu Xiao , Jinming Hou , Yu Ni","doi":"10.1016/j.gloei.2025.05.001","DOIUrl":null,"url":null,"abstract":"<div><div>China has abundant renewable energy resources. With the establishment of carbon peaking and carbon neutrality goals, renewable energy sources such as wind power and photovoltaics have undergone tremendous development. However, because of the randomness and volatility of wind and photovoltaic power, the large-scale development of renewable energy faces challenges with accommodation and transmission. At present, the bundling of wind–photovoltaic–thermal power with ultra-high voltage transmission projects is the main development approach for renewable energy bases in western and northern China. Nonetheless, solving the problems of high carbon dioxide emission, carbon dioxide capture, and the utilization of thermal power is still necessary. Based on power-to-hydrogen, power-to-methanol, and oxygen-enriched combustion power generation technologies, this article proposes a power-to-hydrogen-and-methanol model based on the collaborative optimization of energy flow and material flow, which is expected to simultaneously solve the problems of renewable energy accommodation and low-carbon transformation of thermal power. Models with different ways of linking power to hydrogen and methanol are established, and an 8760-hour-time-series operation simulation is incorporated into the planning model. A case study is then conducted on renewable energy bases in the deserts of western and northern China. The results show that the power-to-hydrogen-and-methanol model based on the collaborative optimization of energy flow and material flow can greatly reduce the demand for hydrogen storage and energy storage, reduce the cost of carbon capture, make full use of by-product oxygen and captured carbon dioxide, and produce high-value chemical raw materials, thus exhibiting significant economic advantages.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 3","pages":"Pages 349-362"},"PeriodicalIF":1.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209651172500043X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
China has abundant renewable energy resources. With the establishment of carbon peaking and carbon neutrality goals, renewable energy sources such as wind power and photovoltaics have undergone tremendous development. However, because of the randomness and volatility of wind and photovoltaic power, the large-scale development of renewable energy faces challenges with accommodation and transmission. At present, the bundling of wind–photovoltaic–thermal power with ultra-high voltage transmission projects is the main development approach for renewable energy bases in western and northern China. Nonetheless, solving the problems of high carbon dioxide emission, carbon dioxide capture, and the utilization of thermal power is still necessary. Based on power-to-hydrogen, power-to-methanol, and oxygen-enriched combustion power generation technologies, this article proposes a power-to-hydrogen-and-methanol model based on the collaborative optimization of energy flow and material flow, which is expected to simultaneously solve the problems of renewable energy accommodation and low-carbon transformation of thermal power. Models with different ways of linking power to hydrogen and methanol are established, and an 8760-hour-time-series operation simulation is incorporated into the planning model. A case study is then conducted on renewable energy bases in the deserts of western and northern China. The results show that the power-to-hydrogen-and-methanol model based on the collaborative optimization of energy flow and material flow can greatly reduce the demand for hydrogen storage and energy storage, reduce the cost of carbon capture, make full use of by-product oxygen and captured carbon dioxide, and produce high-value chemical raw materials, thus exhibiting significant economic advantages.