Study the effect of using a dual rotor system on the performance of horizontal axis wind turbines using CFD

IF 2.6 Q4 ENERGY & FUELS
Amr Mokhtar , Mahmoud Fouad , Mohamed Rashed , Mostafa Mokhtar
{"title":"Study the effect of using a dual rotor system on the performance of horizontal axis wind turbines using CFD","authors":"Amr Mokhtar ,&nbsp;Mahmoud Fouad ,&nbsp;Mohamed Rashed ,&nbsp;Mostafa Mokhtar","doi":"10.1016/j.gloei.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>This research aims to improve the power output of a horizontal axis wind turbine (HAWT) by using an auxiliary rotor in front of the main rotor, this configuration is called a dual-rotor wind turbine (DRWT). The three-bladed main rotor has a diameter of 0.9 m and both rotors with NREL S826 airfoil. ANSYS Fluent CFD simulation was used to optimize the DRWT performance where the numerical model was solved using the Realizable <em>k</em>-<em>ɛ</em> turbulence model. Four parameters are used, diameter ratio between the auxiliary front rotor and the main rear rotor (<em>D</em><sub>R</sub> = 0.25, <em>D</em><sub>R</sub> = 0.5, and <em>D</em><sub>R</sub> = 0.75), axial free stream velocity according to the normal wind speed range in Egypt (<em>V</em><sub>o</sub> = 5 m/s, <em>V</em><sub>o</sub> = 7.5 m/s, and <em>V</em><sub>o</sub> = 10 m/s), tip speed ratio which ranges from 2 to 8, and the number of blades of the front rotor (<em>B</em> = 2, <em>B</em> = 3 and <em>B</em> = 4). The results show that increasing the number of blades positively impacts performance but at lower tip speed ratios. Smaller diameter ratios yield better performance, while increasing wind speed results in higher power. The best performance was achieved at freestream velocity <em>V</em><sub>o</sub> = 10 m/s, diameter ratio <em>D</em><sub>R</sub> = 0.25, front rotor number of blades <em>B</em> = 4, and tip speed ratio <em>λ</em> = 5 in which the overall maximum power coefficient Cp max = 0.552 with an increase with 36.75 % compared to the single rotor case.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 3","pages":"Pages 497-509"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to improve the power output of a horizontal axis wind turbine (HAWT) by using an auxiliary rotor in front of the main rotor, this configuration is called a dual-rotor wind turbine (DRWT). The three-bladed main rotor has a diameter of 0.9 m and both rotors with NREL S826 airfoil. ANSYS Fluent CFD simulation was used to optimize the DRWT performance where the numerical model was solved using the Realizable k-ɛ turbulence model. Four parameters are used, diameter ratio between the auxiliary front rotor and the main rear rotor (DR = 0.25, DR = 0.5, and DR = 0.75), axial free stream velocity according to the normal wind speed range in Egypt (Vo = 5 m/s, Vo = 7.5 m/s, and Vo = 10 m/s), tip speed ratio which ranges from 2 to 8, and the number of blades of the front rotor (B = 2, B = 3 and B = 4). The results show that increasing the number of blades positively impacts performance but at lower tip speed ratios. Smaller diameter ratios yield better performance, while increasing wind speed results in higher power. The best performance was achieved at freestream velocity Vo = 10 m/s, diameter ratio DR = 0.25, front rotor number of blades B = 4, and tip speed ratio λ = 5 in which the overall maximum power coefficient Cp max = 0.552 with an increase with 36.75 % compared to the single rotor case.
利用CFD研究了双转子系统对水平轴风力机性能的影响
本研究的目的是在水平轴风力机(HAWT)的主转子前面增加一个辅助转子来提高其功率输出,这种结构称为双转子风力机(DRWT)。三叶主旋翼直径0.9米,两个旋翼都采用NREL S826翼型。采用ANSYS Fluent CFD仿真对DRWT性能进行优化,采用Realizable k- ε湍流模型求解数值模型。采用辅助前转子与主后转子直径比(DR = 0.25, DR = 0.5, DR = 0.75),根据埃及正常风速范围的轴向自由流速度(Vo = 5m /s, Vo = 7.5 m/s, Vo = 10m /s),叶顶速比2 ~ 8,前转子叶片数(B = 2, B = 3, B = 4)四个参数。结果表明,增加叶片数量对性能有积极影响,但叶尖速比较低。较小的直径比产生更好的性能,而增加风速产生更高的功率。在自由流速度Vo = 10 m/s、直径比DR = 0.25、前旋翼叶数B = 4、叶尖速比λ = 5时,总最大功率系数Cp max = 0.552,比单转子情况提高36.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信