SP-RF-ARIMA: A sparse random forest and ARIMA hybrid model for electric load forecasting

IF 2.6 Q4 ENERGY & FUELS
Kamran Hassanpouri Baesmat , Farhad Shokoohi , Zeinab Farrokhi
{"title":"SP-RF-ARIMA: A sparse random forest and ARIMA hybrid model for electric load forecasting","authors":"Kamran Hassanpouri Baesmat ,&nbsp;Farhad Shokoohi ,&nbsp;Zeinab Farrokhi","doi":"10.1016/j.gloei.2025.04.003","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate Electric Load Forecasting (ELF) is crucial for optimizing production capacity, improving operational efficiency, and managing energy resources effectively. Moreover, precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption, downtime, and waste. However, with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors, no single approach has emerged as universally effective. In response, this research presents a hybrid modeling framework that combines the strengths of Random Forest (RF) and Autoregressive Integrated Moving Average (ARIMA) models, enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy (MRMRMS) method—to produce a sparse model. Additionally, the residual patterns are analyzed to enhance forecast accuracy. High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky (DEO&amp;K) are used in this application. This methodology, termed SP-RF-ARIMA, is evaluated against existing approaches; it demonstrates more than 40% reduction in mean absolute error and root mean square error compared to the second-best method.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"8 3","pages":"Pages 486-496"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511725000490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate Electric Load Forecasting (ELF) is crucial for optimizing production capacity, improving operational efficiency, and managing energy resources effectively. Moreover, precise ELF contributes to a smaller environmental footprint by reducing the risks of disruption, downtime, and waste. However, with increasingly complex energy consumption patterns driven by renewable energy integration and changing consumer behaviors, no single approach has emerged as universally effective. In response, this research presents a hybrid modeling framework that combines the strengths of Random Forest (RF) and Autoregressive Integrated Moving Average (ARIMA) models, enhanced with advanced feature selection—Minimum Redundancy Maximum Relevancy and Maximum Synergy (MRMRMS) method—to produce a sparse model. Additionally, the residual patterns are analyzed to enhance forecast accuracy. High-resolution weather data from Weather Underground and historical energy consumption data from PJM for Duke Energy Ohio and Kentucky (DEO&K) are used in this application. This methodology, termed SP-RF-ARIMA, is evaluated against existing approaches; it demonstrates more than 40% reduction in mean absolute error and root mean square error compared to the second-best method.
SP-RF-ARIMA:用于电力负荷预测的稀疏随机森林和ARIMA混合模型
准确的电力负荷预测(ELF)对于优化生产能力、提高运行效率和有效管理能源资源至关重要。此外,精确的ELF通过减少中断、停机和浪费的风险,有助于减少环境足迹。然而,在可再生能源整合和消费者行为变化的驱动下,能源消费模式日益复杂,没有一种方法是普遍有效的。为此,本研究提出了一种混合建模框架,该框架结合了随机森林(RF)和自回归综合移动平均(ARIMA)模型的优势,并辅以先进的特征选择——最小冗余、最大关联和最大协同(MRMRMS)方法——来生成稀疏模型。此外,对残差模式进行了分析,以提高预报精度。该应用程序使用了来自weather Underground的高分辨率天气数据和来自PJM的Duke energy Ohio和Kentucky (DEO&;K)的历史能耗数据。这种被称为SP-RF-ARIMA的方法是根据现有方法进行评估的;与第二好的方法相比,它的平均绝对误差和均方根误差降低了40%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Energy Interconnection
Global Energy Interconnection Engineering-Automotive Engineering
CiteScore
5.70
自引率
0.00%
发文量
985
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信