VOS: Towards thermal infrared image colorization via View Overlap Strategy

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Weida Zhan , Yilin Wang , Yu Chen , Hang Yang , Guilong Zhao , Yingying Wang , Shujie Zhai , Tianyun Luan , Deng Han
{"title":"VOS: Towards thermal infrared image colorization via View Overlap Strategy","authors":"Weida Zhan ,&nbsp;Yilin Wang ,&nbsp;Yu Chen ,&nbsp;Hang Yang ,&nbsp;Guilong Zhao ,&nbsp;Yingying Wang ,&nbsp;Shujie Zhai ,&nbsp;Tianyun Luan ,&nbsp;Deng Han","doi":"10.1016/j.neucom.2025.130793","DOIUrl":null,"url":null,"abstract":"<div><div>Currently, a significant challenge still exists in thermal infrared images colorization, as current methods struggle with translating texture naturally and achieving color accuracy. To overcome this challenge, we propose a View Overlap Strategy (VOS) for colorizing infrared images. The proposed VOS employs a dual-branch generator designed to translate different regions of the same object into colorization output, and it evaluates the generated overlapping regions through an Optimal Adversarial Strategy (OAS) to determine the best generator output results. To achieve whole-image colorization, a unique sliding mechanism is designed that gradually extends the colorized region over the entire infrared image, continually approximating the final colorization result during the dual-branch generator’s adversarial training. Extensive experiments on the FLIR dataset and KAIST dataset demonstrate that the proposed VOS can be applied within existing colorization adversarial networks, leading to superior performance metrics and visual quality. The color images generated through our proposed VOS present enhanced clarity and realism.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"649 ","pages":"Article 130793"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014651","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, a significant challenge still exists in thermal infrared images colorization, as current methods struggle with translating texture naturally and achieving color accuracy. To overcome this challenge, we propose a View Overlap Strategy (VOS) for colorizing infrared images. The proposed VOS employs a dual-branch generator designed to translate different regions of the same object into colorization output, and it evaluates the generated overlapping regions through an Optimal Adversarial Strategy (OAS) to determine the best generator output results. To achieve whole-image colorization, a unique sliding mechanism is designed that gradually extends the colorized region over the entire infrared image, continually approximating the final colorization result during the dual-branch generator’s adversarial training. Extensive experiments on the FLIR dataset and KAIST dataset demonstrate that the proposed VOS can be applied within existing colorization adversarial networks, leading to superior performance metrics and visual quality. The color images generated through our proposed VOS present enhanced clarity and realism.
基于视点重叠策略的热红外图像着色研究
目前,热红外图像的着色仍然存在很大的挑战,因为现有的方法难以自然地翻译纹理并实现颜色准确性。为了克服这一挑战,我们提出了一种用于红外图像着色的视图重叠策略(VOS)。该算法采用双支路生成器将同一物体的不同区域转换为着色输出,并通过最优对抗策略(OAS)对生成的重叠区域进行评估,以确定最佳生成器输出结果。为了实现整个图像的着色,设计了一种独特的滑动机构,在双支路生成器的对抗训练过程中,逐渐将着色区域扩展到整个红外图像,不断逼近最终的着色结果。在FLIR数据集和KAIST数据集上进行的大量实验表明,所提出的VOS可以应用于现有的着色对抗网络,从而获得卓越的性能指标和视觉质量。通过我们提出的VOS生成的彩色图像具有增强的清晰度和真实感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信