UdpTrace: Utility-enhanced differential privacy scheme for trajectory data publishing

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Sun, Kui Zhao, Gang Liang, Zhiwei Liang, Lingla Jiang
{"title":"UdpTrace: Utility-enhanced differential privacy scheme for trajectory data publishing","authors":"Wei Sun,&nbsp;Kui Zhao,&nbsp;Gang Liang,&nbsp;Zhiwei Liang,&nbsp;Lingla Jiang","doi":"10.1016/j.neucom.2025.130785","DOIUrl":null,"url":null,"abstract":"<div><div>Differential privacy is a popular method for preserving privacy in trajectory data publishing, allowing the utilization of user data while protecting sensitive information. However, trajectory data publishing under differential privacy often suffers from low utility and limits its value for meaningful analysis. In this paper, we propose UdpTrace, a utility-enhanced differential privacy scheme for trajectory data publishing. First, we introduce a method for discretizing geographic regions based on trajectory density. This method employs a coarse first-layer grid to enhance privacy protection and a fine second-layer grid to capture detailed trajectory information, thereby maintaining privacy while improving the application value of the data. Second, we build a semantic trip transfer matrix by aggregating the location label transfer probabilities and the cell transfers under the corresponding labels to maintain the semantic connection between the start and end regions. Third, we develop a novel sampling method to generate realistic intermediate trajectory points leveraging local transition patterns captured in the second-layer grid. Experimental results indicate that the proposed scheme effectively preserves privacy while significantly improving the utility of trajectory data.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"649 ","pages":"Article 130785"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225014572","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Differential privacy is a popular method for preserving privacy in trajectory data publishing, allowing the utilization of user data while protecting sensitive information. However, trajectory data publishing under differential privacy often suffers from low utility and limits its value for meaningful analysis. In this paper, we propose UdpTrace, a utility-enhanced differential privacy scheme for trajectory data publishing. First, we introduce a method for discretizing geographic regions based on trajectory density. This method employs a coarse first-layer grid to enhance privacy protection and a fine second-layer grid to capture detailed trajectory information, thereby maintaining privacy while improving the application value of the data. Second, we build a semantic trip transfer matrix by aggregating the location label transfer probabilities and the cell transfers under the corresponding labels to maintain the semantic connection between the start and end regions. Third, we develop a novel sampling method to generate realistic intermediate trajectory points leveraging local transition patterns captured in the second-layer grid. Experimental results indicate that the proposed scheme effectively preserves privacy while significantly improving the utility of trajectory data.
UdpTrace:用于轨迹数据发布的实用程序增强的差分隐私方案
差分隐私是一种在轨迹数据发布中保护隐私的常用方法,它允许在保护敏感信息的同时利用用户数据。然而,差分隐私下的轨迹数据发布往往效用较低,限制了其对有意义分析的价值。在本文中,我们提出了UdpTrace,这是一种实用增强的用于轨迹数据发布的差分隐私方案。首先,提出了一种基于轨迹密度的地理区域离散方法。该方法采用粗糙的第一层网格增强隐私保护,采用精细的第二层网格捕获详细的轨迹信息,在保持隐私的同时提高数据的应用价值。其次,我们通过汇总位置标签转移概率和相应标签下的单元转移来构建语义行程转移矩阵,以保持起始和结束区域之间的语义连接。第三,我们开发了一种新的采样方法,利用在第二层网格中捕获的局部过渡模式来生成真实的中间轨迹点。实验结果表明,该方案在有效保护隐私的同时,显著提高了轨迹数据的利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信