Cutting-edge DFT-driven design of end-capped acceptor-modified hole transporters: Unraveling next-generation optoelectronic properties for high-performance perovskite photovoltaics

IF 3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Sidra Manzoor, Sajjad Ali, Rasheed Ahmad Khera, Ruba Munir, Saima Noreen
{"title":"Cutting-edge DFT-driven design of end-capped acceptor-modified hole transporters: Unraveling next-generation optoelectronic properties for high-performance perovskite photovoltaics","authors":"Sidra Manzoor,&nbsp;Sajjad Ali,&nbsp;Rasheed Ahmad Khera,&nbsp;Ruba Munir,&nbsp;Saima Noreen","doi":"10.1016/j.comptc.2025.115347","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite solar cells (PSCs) hold great promise in solving global energy issues. In this study, we present a novel method for improving PSC performance by designing and synthesizing seven extremely effective hole transport layer (HTL) molecules, identified as A2D1–A2D7. This approach incorporates acceptor groups into a planar anthracene with triphenylamine (TPA) side chains through thiophene bridges, improving the materials' optoelectronic properties for PSC applications. These customized HTL molecules display low exciton binding energies (ranging from -0.483 to -−0.082 eV), signifying efficient charge separation and transport. Optical analysis shows narrow energy gaps (between 1.02–1.76 eV) and broad absorption across the visible spectrum, which boosts light harvesting and photocurrent generation in PSCs. The molecules also exhibit low hole reorganization energies (0.0072442–0.0092753 eV). These findings provide fresh insights into the design of anthracene-based HTL molecules. This work offers a promising approach for developing high-performance materials for next-generation solar technologies.</div></div>","PeriodicalId":284,"journal":{"name":"Computational and Theoretical Chemistry","volume":"1251 ","pages":"Article 115347"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Theoretical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210271X2500283X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) hold great promise in solving global energy issues. In this study, we present a novel method for improving PSC performance by designing and synthesizing seven extremely effective hole transport layer (HTL) molecules, identified as A2D1–A2D7. This approach incorporates acceptor groups into a planar anthracene with triphenylamine (TPA) side chains through thiophene bridges, improving the materials' optoelectronic properties for PSC applications. These customized HTL molecules display low exciton binding energies (ranging from -0.483 to -−0.082 eV), signifying efficient charge separation and transport. Optical analysis shows narrow energy gaps (between 1.02–1.76 eV) and broad absorption across the visible spectrum, which boosts light harvesting and photocurrent generation in PSCs. The molecules also exhibit low hole reorganization energies (0.0072442–0.0092753 eV). These findings provide fresh insights into the design of anthracene-based HTL molecules. This work offers a promising approach for developing high-performance materials for next-generation solar technologies.

Abstract Image

尖端dft驱动的端封受体修饰的空穴转运体设计:揭示高性能钙钛矿光伏的下一代光电特性
钙钛矿太阳能电池(PSCs)在解决全球能源问题方面具有很大的前景。在这项研究中,我们提出了一种通过设计和合成7个极有效的空穴传输层(HTL)分子来提高PSC性能的新方法,鉴定为A2D1-A2D7。该方法通过噻吩桥将受体基团结合到具有三苯胺(TPA)侧链的平面蒽中,从而改善了PSC应用中材料的光电性能。这些定制的HTL分子显示出较低的激子结合能(范围从-0.483到- - 0.082 eV),这意味着有效的电荷分离和传输。光学分析表明,PSCs的能隙窄(在1.02-1.76 eV之间),在可见光谱上吸收宽,这促进了光收集和光电流的产生。分子也表现出较低的空穴重组能(0.0072442-0.0092753 eV)。这些发现为基于蒽基的HTL分子的设计提供了新的见解。这项工作为开发下一代太阳能技术的高性能材料提供了一种很有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
10.70%
发文量
331
审稿时长
31 days
期刊介绍: Computational and Theoretical Chemistry publishes high quality, original reports of significance in computational and theoretical chemistry including those that deal with problems of structure, properties, energetics, weak interactions, reaction mechanisms, catalysis, and reaction rates involving atoms, molecules, clusters, surfaces, and bulk matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信