Construction and application of a drought classification model for tea plantations based on multi-source remote sensing

IF 5.7 Q1 AGRICULTURAL ENGINEERING
Yang Xu , Yilin Mao , He Li , Xiaojiang Li , Litao Sun , Kai Fan , Zhipeng Li , Shuting Gong , Zhaotang Ding , Yu Wang
{"title":"Construction and application of a drought classification model for tea plantations based on multi-source remote sensing","authors":"Yang Xu ,&nbsp;Yilin Mao ,&nbsp;He Li ,&nbsp;Xiaojiang Li ,&nbsp;Litao Sun ,&nbsp;Kai Fan ,&nbsp;Zhipeng Li ,&nbsp;Shuting Gong ,&nbsp;Zhaotang Ding ,&nbsp;Yu Wang","doi":"10.1016/j.atech.2025.101132","DOIUrl":null,"url":null,"abstract":"<div><div>In the backdrop of global climate change, drought is identified as a major natural hazard, posing a severe threat to tea production. Traditional methods for assessing drought stress in tea plants rely on manual investigation. However, this approach is time-consuming and labor-intensive. While unmanned aerial vehicle (UAV) remote sensing offers efficient alternatives, existing studies predominantly rely on single-sensor data (e.g., multispectral (MS) or thermal infrared (TIR)), overlooking the potential of multi-source fusion—especially for tea plantations. To address this gap, we propose RSDCM (Remote Sensing-based Drought Classification Model), an improved Genetic Algorithm-Backpropagation (GA-BP) combined with MS + TIR framework that optimizes initial weights and thresholds via GA's global search (hidden layer=1, neurons in the hidden layers=5, 50 generations, population size=5, NonUnifMutation operators) to escape local minima and accelerate convergence. A UAV platform equipped with MS, RGB, and TIR sensors collected multi-source data from drought-stressed tea plantations in Eastern China. The RSDCM model was benchmarked against single BP and three classical machine learning models (SVM, RF, ELM).</div><div>The study found that: (1) Multi-source data fusion outperformed single-source data, with MS + TIR achieving optimal performance (Accuracy: 0.983, Precision: 0.967-1.000, Recall: 0.967-1.000, F1-score: 0.967-1.000)—surpassing MS (Accuracy: 0.950, Precision: 0.894-1.000, Recall: 0.917-0.983, F1-score: 0.924-0.983), TIR (Accuracy: 0.925, Precision: 0.862-0.982, Recall: 0.867-0.983, F1-score: 0.889-0.967), and RGB (Accuracy: 0.904, Precision: 0.824-0.950, Recall: 0.783-0.950, F1-score: 0.847-0.950) alone. (2) The RSDCM model (accuracy: 0.983) performed better than the other four models, with high generalizability across all drought levels (F1-scores: 0.967–1.000 for severe/moderate/light/normal classes). (3) The RSDCM model could accurately classify drought stress levels in tea plantations.</div><div>Thus, RSDCM provides a novel, robust solution for UAV-based drought assessment in tea plantations, combining multi-sensor fusion and deep learning.</div></div>","PeriodicalId":74813,"journal":{"name":"Smart agricultural technology","volume":"12 ","pages":"Article 101132"},"PeriodicalIF":5.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart agricultural technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772375525003648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In the backdrop of global climate change, drought is identified as a major natural hazard, posing a severe threat to tea production. Traditional methods for assessing drought stress in tea plants rely on manual investigation. However, this approach is time-consuming and labor-intensive. While unmanned aerial vehicle (UAV) remote sensing offers efficient alternatives, existing studies predominantly rely on single-sensor data (e.g., multispectral (MS) or thermal infrared (TIR)), overlooking the potential of multi-source fusion—especially for tea plantations. To address this gap, we propose RSDCM (Remote Sensing-based Drought Classification Model), an improved Genetic Algorithm-Backpropagation (GA-BP) combined with MS + TIR framework that optimizes initial weights and thresholds via GA's global search (hidden layer=1, neurons in the hidden layers=5, 50 generations, population size=5, NonUnifMutation operators) to escape local minima and accelerate convergence. A UAV platform equipped with MS, RGB, and TIR sensors collected multi-source data from drought-stressed tea plantations in Eastern China. The RSDCM model was benchmarked against single BP and three classical machine learning models (SVM, RF, ELM).
The study found that: (1) Multi-source data fusion outperformed single-source data, with MS + TIR achieving optimal performance (Accuracy: 0.983, Precision: 0.967-1.000, Recall: 0.967-1.000, F1-score: 0.967-1.000)—surpassing MS (Accuracy: 0.950, Precision: 0.894-1.000, Recall: 0.917-0.983, F1-score: 0.924-0.983), TIR (Accuracy: 0.925, Precision: 0.862-0.982, Recall: 0.867-0.983, F1-score: 0.889-0.967), and RGB (Accuracy: 0.904, Precision: 0.824-0.950, Recall: 0.783-0.950, F1-score: 0.847-0.950) alone. (2) The RSDCM model (accuracy: 0.983) performed better than the other four models, with high generalizability across all drought levels (F1-scores: 0.967–1.000 for severe/moderate/light/normal classes). (3) The RSDCM model could accurately classify drought stress levels in tea plantations.
Thus, RSDCM provides a novel, robust solution for UAV-based drought assessment in tea plantations, combining multi-sensor fusion and deep learning.
基于多源遥感的茶园干旱分类模型构建及应用
在全球气候变化的背景下,干旱被确定为主要的自然灾害,对茶叶生产构成严重威胁。传统的茶树干旱胁迫评估方法依赖于人工调查。然而,这种方法既耗时又费力。虽然无人机(UAV)遥感提供了有效的替代方案,但现有的研究主要依赖于单传感器数据(例如,多光谱(MS)或热红外(TIR)),忽视了多源融合的潜力,特别是对于茶园。为了解决这一差距,我们提出了RSDCM(基于遥感的干旱分类模型),一种改进的遗传算法-反向传播(GA- bp)结合MS + TIR框架,通过GA的全局搜索(隐藏层=1,隐藏层中的神经元=5,50代,种群大小=5,NonUnifMutation算子)优化初始权值和阈值,以逃避局部极小值并加速收敛。配备MS、RGB和TIR传感器的无人机平台收集了中国东部干旱茶园的多源数据。RSDCM模型与单个BP和三种经典机器学习模型(SVM, RF, ELM)进行了基准测试。研究发现:(1)多源数据融合优于单源数据融合,MS + TIR表现最佳(准确率:0.983,精密度:0.967-1.000,召回率:0.967-1.000,f1评分:0.967-1.000),超过MS(准确率:0.950,精密度:0.894-1.000,召回率:0.917-0.983,f1评分:0.924-0.983),TIR(准确率:0.925,精密度:0.862-0.982,召回率:0.867-0.983,f1评分:0.889-0.967),RGB(准确率:0.904,精密度:0.824-0.950,召回率:0.783-0.950,f1评分:0.967- 0.967);0.847 - -0.950)。(2) RSDCM模型(精度为0.983)优于其他4种模型,具有较高的泛化性(重度/中度/轻度/正常级别的f1得分为0.967 ~ 1.000)。(3) RSDCM模型能准确分类茶园干旱胁迫水平。因此,RSDCM结合多传感器融合和深度学习,为基于无人机的茶园干旱评估提供了一种新颖、强大的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信