Optimizing melanoma diagnosis: A hybrid deep learning and quantum computing approach for enhanced lesion classification

Maria Frasca , Ilaria Cutica , Gabriella Pravettoni , Davide La Torre
{"title":"Optimizing melanoma diagnosis: A hybrid deep learning and quantum computing approach for enhanced lesion classification","authors":"Maria Frasca ,&nbsp;Ilaria Cutica ,&nbsp;Gabriella Pravettoni ,&nbsp;Davide La Torre","doi":"10.1016/j.ibmed.2025.100264","DOIUrl":null,"url":null,"abstract":"<div><div>Melanoma is one of the most aggressive forms of skin cancer, necessitating advanced diagnostic tools to improve early detection. This study presents a novel AI-driven approach that combines deep neural networks with quantum computing techniques for enhanced lesion classification. Specifically, we employ a U-Net model for segmentation and a hybrid Convolutional Neural Network - Quantum Neural Network (CNN-QNN) for classification. Our approach achieves a precision of 99.67 %, recall of 99.67 %, and an overall accuracy of 99.35 % on the HAM10000 dataset. Additionally, we report a sensitivity of 99.4 %, a specificity of 99.2 %, and a macro F1-score of 99.5 %, significantly surpassing traditional CNN-based classifiers. This hybrid model outperforms conventional deep learning approaches, demonstrating its potential for aiding dermatologists in clinical decision-making. A comparative analysis with state-of-the-art models further validates the effectiveness of our method.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"12 ","pages":"Article 100264"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521225000687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma is one of the most aggressive forms of skin cancer, necessitating advanced diagnostic tools to improve early detection. This study presents a novel AI-driven approach that combines deep neural networks with quantum computing techniques for enhanced lesion classification. Specifically, we employ a U-Net model for segmentation and a hybrid Convolutional Neural Network - Quantum Neural Network (CNN-QNN) for classification. Our approach achieves a precision of 99.67 %, recall of 99.67 %, and an overall accuracy of 99.35 % on the HAM10000 dataset. Additionally, we report a sensitivity of 99.4 %, a specificity of 99.2 %, and a macro F1-score of 99.5 %, significantly surpassing traditional CNN-based classifiers. This hybrid model outperforms conventional deep learning approaches, demonstrating its potential for aiding dermatologists in clinical decision-making. A comparative analysis with state-of-the-art models further validates the effectiveness of our method.

Abstract Image

优化黑色素瘤诊断:用于增强病变分类的混合深度学习和量子计算方法
黑色素瘤是最具侵袭性的皮肤癌之一,需要先进的诊断工具来提高早期发现。本研究提出了一种新的人工智能驱动方法,将深度神经网络与量子计算技术相结合,以增强病变分类。具体来说,我们使用U-Net模型进行分割,使用混合卷积神经网络-量子神经网络(CNN-QNN)进行分类。我们的方法在HAM10000数据集上实现了99.67%的准确率、99.67%的召回率和99.35%的总体准确率。此外,我们报告的灵敏度为99.4%,特异性为99.2%,宏观f1评分为99.5%,显著超过传统的基于cnn的分类器。这种混合模型优于传统的深度学习方法,证明了它在帮助皮肤科医生进行临床决策方面的潜力。与最先进模型的对比分析进一步验证了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信