Lukas Einkemmer , Katharina Kormann , Jonas Kusch , Ryan G. McClarren , Jing-Mei Qiu
{"title":"A review of low-rank methods for time-dependent kinetic simulations","authors":"Lukas Einkemmer , Katharina Kormann , Jonas Kusch , Ryan G. McClarren , Jing-Mei Qiu","doi":"10.1016/j.jcp.2025.114191","DOIUrl":null,"url":null,"abstract":"<div><div>Time-dependent kinetic models are ubiquitous in computational science and engineering. The underlying integro-differential equations in these models are high-dimensional, comprised of a six–dimensional phase space, making simulations of such phenomena extremely expensive. In this article we demonstrate that in many situations, the solution to kinetics problems lives on a low dimensional manifold that can be described by a low-rank matrix or tensor approximation. We then review the recent development of so-called low-rank methods that evolve the solution on this manifold. The two classes of methods we review are the dynamical low-rank (DLR) method, which derives differential equations for the low-rank factors, and a Step-and-Truncate (SAT) approach, which projects the solution onto the low-rank representation after each time step. Thorough discussions of time integrators, tensor decompositions, and method properties such as structure preservation and computational efficiency are included. We further show examples of low-rank methods as applied to particle transport and plasma dynamics.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"538 ","pages":"Article 114191"},"PeriodicalIF":3.8000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125004747","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-dependent kinetic models are ubiquitous in computational science and engineering. The underlying integro-differential equations in these models are high-dimensional, comprised of a six–dimensional phase space, making simulations of such phenomena extremely expensive. In this article we demonstrate that in many situations, the solution to kinetics problems lives on a low dimensional manifold that can be described by a low-rank matrix or tensor approximation. We then review the recent development of so-called low-rank methods that evolve the solution on this manifold. The two classes of methods we review are the dynamical low-rank (DLR) method, which derives differential equations for the low-rank factors, and a Step-and-Truncate (SAT) approach, which projects the solution onto the low-rank representation after each time step. Thorough discussions of time integrators, tensor decompositions, and method properties such as structure preservation and computational efficiency are included. We further show examples of low-rank methods as applied to particle transport and plasma dynamics.
期刊介绍:
Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries.
The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.