{"title":"A novel robust filter for non-stationary systems with stochastic measurement loss probabilities","authors":"Shen Liang , Jian Sun , GuoLiang Xu","doi":"10.1016/j.jfranklin.2025.107795","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces an innovative variational Bayesian Kalman filtering method to tackle the filtering challenges posed by stochastic measurement losses and heavy-tailed noise in non-stationary linear systems. The non-stationary heavy-tailed noise is represented by a Bernoulli random variable that combines a Gaussian distribution with a heavy-tailed distribution. The Gaussian distribution has a high probability and nominal covariance, while the heavy-tailed distribution has a low probability and a covariance that can adapt to different situations. The Undisclosed nominal covariance is assumed to adhere to the distribution characteristics of the inverse Wishart. To construct a hierarchical Gaussian state space model, the measurement probability function is reshaped into an exponential product form through the utilization of extra Bernoulli random variable. Ultimately, the variational Bayesian technique is utilized to estimate the unknown random variables jointly. Simulation results show that the proposed algorithm has significant improvement in both filtering accuracy and measurement loss probability estimation.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 12","pages":"Article 107795"},"PeriodicalIF":3.7000,"publicationDate":"2025-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225002881","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces an innovative variational Bayesian Kalman filtering method to tackle the filtering challenges posed by stochastic measurement losses and heavy-tailed noise in non-stationary linear systems. The non-stationary heavy-tailed noise is represented by a Bernoulli random variable that combines a Gaussian distribution with a heavy-tailed distribution. The Gaussian distribution has a high probability and nominal covariance, while the heavy-tailed distribution has a low probability and a covariance that can adapt to different situations. The Undisclosed nominal covariance is assumed to adhere to the distribution characteristics of the inverse Wishart. To construct a hierarchical Gaussian state space model, the measurement probability function is reshaped into an exponential product form through the utilization of extra Bernoulli random variable. Ultimately, the variational Bayesian technique is utilized to estimate the unknown random variables jointly. Simulation results show that the proposed algorithm has significant improvement in both filtering accuracy and measurement loss probability estimation.
期刊介绍:
The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.