{"title":"VRSTNN: Visual-Relational Spatio-Temporal Neural Network for Early Hazardous Event Detection in Automated Driving Systems","authors":"Dannier Xiao;Mehrdad Dianati;Paul Jennings;Roger Woodman","doi":"10.1109/TIV.2024.3392589","DOIUrl":null,"url":null,"abstract":"Reliable and early detection of hazardous events is vital for the safe deployment of automated driving systems. Yet, it remains challenging as road environments can be highly complex and dynamic. State-of-the-art solutions utilise neural networks to learn visual features and temporal patterns from collision videos. However, in this paper, we show how visual features alone may not provide the essential context needed to detect early warning patterns. To address these limitations, we first propose an input encoding that captures the context of the scene. This is achieved by formulating a scene as a graph to provide a framework to represent the arrangement, relationships and behaviours of each road user. We then process the graphs using graph neural networks to identify scene context from: 1) the collective behaviour of nearby road users based on their relationships and 2) local node features that describe individual behaviour. We then propose a novel visual-relational spatio-temporal neural network (VRSTNN) that leverages multi-modal processing to understand scene context and fuse it with the visual characteristics of the scene for more reliable and early hazard detection. Our results show that our VRSTNN outperforms state-of-the-art models in terms of accuracy, F1 and false negative rate on a real and synthetic benchmark dataset: DOTA and GTAC.","PeriodicalId":36532,"journal":{"name":"IEEE Transactions on Intelligent Vehicles","volume":"9 11","pages":"7016-7029"},"PeriodicalIF":14.0000,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Vehicles","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10507041/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Reliable and early detection of hazardous events is vital for the safe deployment of automated driving systems. Yet, it remains challenging as road environments can be highly complex and dynamic. State-of-the-art solutions utilise neural networks to learn visual features and temporal patterns from collision videos. However, in this paper, we show how visual features alone may not provide the essential context needed to detect early warning patterns. To address these limitations, we first propose an input encoding that captures the context of the scene. This is achieved by formulating a scene as a graph to provide a framework to represent the arrangement, relationships and behaviours of each road user. We then process the graphs using graph neural networks to identify scene context from: 1) the collective behaviour of nearby road users based on their relationships and 2) local node features that describe individual behaviour. We then propose a novel visual-relational spatio-temporal neural network (VRSTNN) that leverages multi-modal processing to understand scene context and fuse it with the visual characteristics of the scene for more reliable and early hazard detection. Our results show that our VRSTNN outperforms state-of-the-art models in terms of accuracy, F1 and false negative rate on a real and synthetic benchmark dataset: DOTA and GTAC.
期刊介绍:
The IEEE Transactions on Intelligent Vehicles (T-IV) is a premier platform for publishing peer-reviewed articles that present innovative research concepts, application results, significant theoretical findings, and application case studies in the field of intelligent vehicles. With a particular emphasis on automated vehicles within roadway environments, T-IV aims to raise awareness of pressing research and application challenges.
Our focus is on providing critical information to the intelligent vehicle community, serving as a dissemination vehicle for IEEE ITS Society members and others interested in learning about the state-of-the-art developments and progress in research and applications related to intelligent vehicles. Join us in advancing knowledge and innovation in this dynamic field.