A numerically stable formula for the conditional distribution of the residual service time in the Mn/PH/1 queue

IF 1.4 Q2 MATHEMATICS, APPLIED
Yutaka Sakuma, Yan Linn Aung
{"title":"A numerically stable formula for the conditional distribution of the residual service time in the Mn/PH/1 queue","authors":"Yutaka Sakuma,&nbsp;Yan Linn Aung","doi":"10.1016/j.rinam.2025.100603","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider an <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>P</mi><mi>H</mi><mo>/</mo><mn>1</mn></mrow></math></span> queue, where arriving customers decide whether to join the queue or not join based on the queue length at arrival instants. Kerner (2008, <em>Stochastic Models</em>) studies the <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>G</mi><mo>/</mo><mn>1</mn></mrow></math></span> queue, and derives a recursive formula for the Laplace-Stieltjes transform (LST, for short) of the conditional distribution of the server’s residual service time, given the queue length at arrival instants. This paper aims to analyze the <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><mi>P</mi><mi>H</mi><mo>/</mo><mn>1</mn></mrow></math></span> queue in a much simpler way than the previous studies, and to show that our LST of the conditional distribution of the server’s residual service time is given in a more numerically stable form than that of the previous studies, specifically by avoiding the indeterminate form such as <span><math><mrow><mn>0</mn><mo>/</mo><mn>0</mn></mrow></math></span>. We then use the formula to compute the customers joining probabilities in Nash equilibrium.</div></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"27 ","pages":"Article 100603"},"PeriodicalIF":1.4000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037425000676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider an Mn/PH/1 queue, where arriving customers decide whether to join the queue or not join based on the queue length at arrival instants. Kerner (2008, Stochastic Models) studies the Mn/G/1 queue, and derives a recursive formula for the Laplace-Stieltjes transform (LST, for short) of the conditional distribution of the server’s residual service time, given the queue length at arrival instants. This paper aims to analyze the Mn/PH/1 queue in a much simpler way than the previous studies, and to show that our LST of the conditional distribution of the server’s residual service time is given in a more numerically stable form than that of the previous studies, specifically by avoiding the indeterminate form such as 0/0. We then use the formula to compute the customers joining probabilities in Nash equilibrium.
Mn/PH/1队列剩余服务时间条件分布的数值稳定公式
本文考虑一个Mn/PH/1队列,其中到达的顾客根据到达时刻的队列长度决定是否加入队列。Kerner (2008, Stochastic Models)研究了Mn/G/1队列,在给定到达时刻队列长度的情况下,导出了服务器剩余服务时间条件分布的Laplace-Stieltjes变换(简称LST)的递归公式。本文旨在以比以往研究简单得多的方式分析Mn/PH/1队列,并表明我们的服务器剩余服务时间条件分布的LST以比以往研究更稳定的数值形式给出,特别是避免了0/0等不确定形式。然后,我们使用该公式来计算纳什均衡中的顾客加入概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信