Neural Implicit Representations for Multi-View Surface Reconstruction: A Survey.

Xinyun Zhang, Ruiqi Yu, Shuang Ren
{"title":"Neural Implicit Representations for Multi-View Surface Reconstruction: A Survey.","authors":"Xinyun Zhang, Ruiqi Yu, Shuang Ren","doi":"10.1109/TVCG.2025.3582627","DOIUrl":null,"url":null,"abstract":"<p><p>Diverging from conventional explicit geometric representations, neural implicit representations utilize continuous function approximators to encode 3D surfaces through parametric formulations including signed distance fields (SDF), unsigned distance fields (UDF), occupancy fields (OF), and neural radiance fields (NeRF). These approaches demonstrate superior multi-view reconstruction fidelity by inherently supporting non-manifold geometries and complex topological variations, establishing themselves as foundational tools in 3D reconstruction. Neural implicit representations can be applied to a diverse array of reconstruction tasks, including object-level reconstruction, scene-level reconstruction, open-surface reconstruction and dynamic reconstruction. The exponential advancement of neural implicit representations in 3D reconstruction necessitates systematic analysis of their evolving methodologies and applications. This survey presents a structured synthesis of cutting-edge research from 2020-2025, establishing a dual-axis taxonomy that categorizes techniques by geometric representation types and application scenarios. Through this survey, we aim to familiarize emerging researchers with the current landscape of neural implicit representation in surface reconstruction, assess innovative contributions and limitations in existing research, and encourage prospective research directions.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3582627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diverging from conventional explicit geometric representations, neural implicit representations utilize continuous function approximators to encode 3D surfaces through parametric formulations including signed distance fields (SDF), unsigned distance fields (UDF), occupancy fields (OF), and neural radiance fields (NeRF). These approaches demonstrate superior multi-view reconstruction fidelity by inherently supporting non-manifold geometries and complex topological variations, establishing themselves as foundational tools in 3D reconstruction. Neural implicit representations can be applied to a diverse array of reconstruction tasks, including object-level reconstruction, scene-level reconstruction, open-surface reconstruction and dynamic reconstruction. The exponential advancement of neural implicit representations in 3D reconstruction necessitates systematic analysis of their evolving methodologies and applications. This survey presents a structured synthesis of cutting-edge research from 2020-2025, establishing a dual-axis taxonomy that categorizes techniques by geometric representation types and application scenarios. Through this survey, we aim to familiarize emerging researchers with the current landscape of neural implicit representation in surface reconstruction, assess innovative contributions and limitations in existing research, and encourage prospective research directions.

基于神经隐式表征的多视图曲面重建研究进展。
与传统的显式几何表示不同,神经隐式表示利用连续函数逼近器通过参数公式对三维曲面进行编码,参数公式包括有符号距离场(SDF)、无符号距离场(UDF)、占用场(OF)和神经辐射场(NeRF)。这些方法通过固有地支持非流形几何和复杂的拓扑变化,展示了优越的多视图重建保真度,使其成为3D重建的基础工具。神经隐式表示可以应用于多种重建任务,包括对象级重建、场景级重建、开放表面重建和动态重建。神经隐式表示在三维重建中的指数级发展要求系统分析其发展的方法和应用。本调查对2020-2025年的前沿研究进行了结构化的综合,建立了一个双轴分类法,根据几何表示类型和应用场景对技术进行分类。通过这项调查,我们旨在使新兴研究人员熟悉神经内隐表征在表面重建中的现状,评估现有研究的创新贡献和局限性,并鼓励未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信