TASCI: transformers for aspect-based sentiment analysis with contextual intent integration.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-05-06 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2760
Hassan Nazeer Chaudhry, Farzana Kulsoom, Zahid Ullah Khan, Muhammad Aman, Sajid Ullah Khan, Abdullah Albanyan
{"title":"TASCI: transformers for aspect-based sentiment analysis with contextual intent integration.","authors":"Hassan Nazeer Chaudhry, Farzana Kulsoom, Zahid Ullah Khan, Muhammad Aman, Sajid Ullah Khan, Abdullah Albanyan","doi":"10.7717/peerj-cs.2760","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we present a novel Transformer-Based Aspect-Level Sentiment Classification with Intent (TASCI) model, designed to enhance sentiment analysis by integrating aspect-level sentiment classification with intent analysis. Traditional sentiment analysis methods often overlook the nuanced relationship between the intent behind a statement and the sentiment expressed toward specific aspects of an entity. TASCI addresses this gap by first extracting aspects using a self-attention mechanism and then employing a Transformer-based model to infer the speaker's intent from preceding sentences. This dual approach allows TASCI to contextualize sentiment analysis, providing a more accurate reflection of user opinions. We validate TASCI's performance on three benchmark datasets: Restaurant, Laptop, and Twitter, achieving state-of-the-art results with an accuracy of 89.10% and a macro-F1 score of 83.38% on the Restaurant dataset, 84.81% accuracy and 78.63% macro-F1 score on the Laptop dataset, and 79.08% accuracy and 77.27% macro-F1 score on the Twitter dataset. These results demonstrate that incorporating intent analysis significantly enhances the model's ability to capture complex sentiment expressions across different domains, thereby setting a new standard for aspect-level sentiment classification.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2760"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190667/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2760","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we present a novel Transformer-Based Aspect-Level Sentiment Classification with Intent (TASCI) model, designed to enhance sentiment analysis by integrating aspect-level sentiment classification with intent analysis. Traditional sentiment analysis methods often overlook the nuanced relationship between the intent behind a statement and the sentiment expressed toward specific aspects of an entity. TASCI addresses this gap by first extracting aspects using a self-attention mechanism and then employing a Transformer-based model to infer the speaker's intent from preceding sentences. This dual approach allows TASCI to contextualize sentiment analysis, providing a more accurate reflection of user opinions. We validate TASCI's performance on three benchmark datasets: Restaurant, Laptop, and Twitter, achieving state-of-the-art results with an accuracy of 89.10% and a macro-F1 score of 83.38% on the Restaurant dataset, 84.81% accuracy and 78.63% macro-F1 score on the Laptop dataset, and 79.08% accuracy and 77.27% macro-F1 score on the Twitter dataset. These results demonstrate that incorporating intent analysis significantly enhances the model's ability to capture complex sentiment expressions across different domains, thereby setting a new standard for aspect-level sentiment classification.

TASCI:具有上下文意图集成的基于方面的情感分析的转换器。
在本文中,我们提出了一种新的基于转换器的方面级情感分类意图(TASCI)模型,旨在通过将方面级情感分类与意图分析相结合来增强情感分析。传统的情感分析方法往往忽略了陈述背后的意图和对实体特定方面表达的情感之间的微妙关系。TASCI通过首先使用自我注意机制提取方面,然后使用基于transformer的模型从前面的句子中推断说话者的意图来解决这一差距。这种双重方法允许TASCI将情感分析置于上下文中,从而更准确地反映用户意见。我们在三个基准数据集上验证了TASCI的性能:餐馆、笔记本电脑和Twitter,在餐馆数据集上获得了最先进的结果,准确率为89.10%,宏f1得分为83.38%,在笔记本电脑数据集上获得了84.81%的准确率和78.63%的宏f1得分,在Twitter数据集上获得了79.08%的准确率和77.27%的宏f1得分。这些结果表明,结合意图分析显着增强了模型捕获不同领域复杂情感表达的能力,从而为方面级情感分类设定了新的标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信