{"title":"Multi-objective federated learning traffic prediction in vehicular network for intelligent transportation system.","authors":"Arulmurgan Aalavanthar, Famila S, Shanmugam Sundaramurthy, Stefano Cirillo, Giandomenico Solimando, Giuseppe Polese","doi":"10.7717/peerj-cs.2922","DOIUrl":null,"url":null,"abstract":"<p><p>The spatial-temporal data of future freight traffic speed in the metropolitan region must be properly understood to develop freight-related traffic management strategies. This work introduces a new approach to traffic prediction using multi-objective federated learning. Instead of relying on a centralized cloud server for data processing, collaborative training is implemented among several participants. The proposed method utilizes the advantages of reinforcement learning in dynamic decision-making scenarios and the expressive capabilities of graphical models to identify traffic intensity. Furthermore, a new methodology integrates federated learning concepts with multi-objective optimization to forecast traffic patterns accurately. The proposed approach exhibits a higher level of performance than existing methods for estimating traffic speed. It achieves a communication delay of 23.4%, packet delivery ratio (PDR) of 92.45%, packet loss rate of 12.34%, prediction accuracy of 97.45%, and resource utilization of 89.56%. The visualisation findings demonstrate that this new approach is able to successfully capture interconnections of metropolitan areas in different neighboring cities.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2922"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2922","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The spatial-temporal data of future freight traffic speed in the metropolitan region must be properly understood to develop freight-related traffic management strategies. This work introduces a new approach to traffic prediction using multi-objective federated learning. Instead of relying on a centralized cloud server for data processing, collaborative training is implemented among several participants. The proposed method utilizes the advantages of reinforcement learning in dynamic decision-making scenarios and the expressive capabilities of graphical models to identify traffic intensity. Furthermore, a new methodology integrates federated learning concepts with multi-objective optimization to forecast traffic patterns accurately. The proposed approach exhibits a higher level of performance than existing methods for estimating traffic speed. It achieves a communication delay of 23.4%, packet delivery ratio (PDR) of 92.45%, packet loss rate of 12.34%, prediction accuracy of 97.45%, and resource utilization of 89.56%. The visualisation findings demonstrate that this new approach is able to successfully capture interconnections of metropolitan areas in different neighboring cities.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.