Ricardo Ordoñez-Avila, Jaime Meza, Sebastian Ventura
{"title":"Mining autonomous student patterns score on LMS within online higher education.","authors":"Ricardo Ordoñez-Avila, Jaime Meza, Sebastian Ventura","doi":"10.7717/peerj-cs.2855","DOIUrl":null,"url":null,"abstract":"<p><p>Higher education institutions actively integrate information and communication technologies through learning management systems (LMS), which are crucial for online education. This study used data mining techniques to predict the autonomous scores of students in the online Law and Psychology programs at the Technical University of Manabi. The process involved data integration and selection of more than 16,000 records, preprocessing, transformation with RobustScaler, predictive modelling that included recursive feature elimination with cross-validation to select features (RFEcv), and hyperparameter fitting to achieve the best fit, and finally, evaluation of the models using metrics of root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R<sup>2</sup>). The feature selection framework suggested by RFEcv contributed to the performance of the models. The variables analyzed focused on download rate, homework submission rate, test performance rate, median daily accesses, median days of access per month, observation of comments on teacher-reviewed assignments, length of final exam, and not requiring the supplemental exam. Hyperparameter adjustment improved the performance of the models after applying RFEcv. The models evaluated showed minimal differences in RMSE ([0.5411 .. 0.6025]). The gradient boosting model achieved the best performance of R<sup>2</sup> = 0.6693, MAE = 0.4041 and RMSE = 0.5411 with the Law online program data, as with the Psychology online program data, with an R<sup>2</sup> = 0.6418, MAE = 0.4232 and RMSE = 0.6025, while the combination of both data sets reflected the best performance with the extreme gradient boosting (XGBoost) model with the values of R<sup>2</sup> = 0.6294, MAE = 0.4295 and RMSE = 0.5985. Future research and implementations could include autonomous score data through plugins and reports integrated into LMSs. This approach may provide indicators of interest for understanding and improving online learning from a personalized, real-time perspective.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2855"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2855","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Higher education institutions actively integrate information and communication technologies through learning management systems (LMS), which are crucial for online education. This study used data mining techniques to predict the autonomous scores of students in the online Law and Psychology programs at the Technical University of Manabi. The process involved data integration and selection of more than 16,000 records, preprocessing, transformation with RobustScaler, predictive modelling that included recursive feature elimination with cross-validation to select features (RFEcv), and hyperparameter fitting to achieve the best fit, and finally, evaluation of the models using metrics of root mean square error (RMSE), mean absolute error (MAE), and the coefficient of determination (R2). The feature selection framework suggested by RFEcv contributed to the performance of the models. The variables analyzed focused on download rate, homework submission rate, test performance rate, median daily accesses, median days of access per month, observation of comments on teacher-reviewed assignments, length of final exam, and not requiring the supplemental exam. Hyperparameter adjustment improved the performance of the models after applying RFEcv. The models evaluated showed minimal differences in RMSE ([0.5411 .. 0.6025]). The gradient boosting model achieved the best performance of R2 = 0.6693, MAE = 0.4041 and RMSE = 0.5411 with the Law online program data, as with the Psychology online program data, with an R2 = 0.6418, MAE = 0.4232 and RMSE = 0.6025, while the combination of both data sets reflected the best performance with the extreme gradient boosting (XGBoost) model with the values of R2 = 0.6294, MAE = 0.4295 and RMSE = 0.5985. Future research and implementations could include autonomous score data through plugins and reports integrated into LMSs. This approach may provide indicators of interest for understanding and improving online learning from a personalized, real-time perspective.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.