Enhanced futures price-spread forecasting based on an attention-driven optimized LSTM network: integrating an improved grey wolf optimizer algorithm for enhanced accuracy.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-06-02 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2865
Yongli Tang, Zhenlun Gao, Zhongqi Cai, Jinxia Yu, Panke Qin
{"title":"Enhanced futures price-spread forecasting based on an attention-driven optimized LSTM network: integrating an improved grey wolf optimizer algorithm for enhanced accuracy.","authors":"Yongli Tang, Zhenlun Gao, Zhongqi Cai, Jinxia Yu, Panke Qin","doi":"10.7717/peerj-cs.2865","DOIUrl":null,"url":null,"abstract":"<p><p>Financial market prediction faces significant challenges due to the complex temporal dependencies and heterogeneous data relationships inherent in futures price-spread data. Traditional machine learning methods struggle to effectively mine these patterns, while conventional long short-term memory (LSTM) models lack focused feature prioritization and suffer from suboptimal hyperparameter selection. This article proposes the Improved Grey Wolf Optimizer with Multi-headed Self-attention and LSTM (IGML) model, which integrates a multi-head self-attention mechanism to enhance feature interaction and introduces an improved grey wolf optimizer (IGWO) with four strategic enhancements for automated hyperparameter tuning. Benchmark tests on optimization problems validate IGWO's superior convergence efficiency. Evaluated on real futures price-spread datasets, the IGML reduces mean square error (RMSE) and mean absolute error (MAE) by up to 88% and 85%, respectively, compared to baseline models, demonstrating its practical efficacy in capturing intricate financial market dynamics.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2865"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2865","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Financial market prediction faces significant challenges due to the complex temporal dependencies and heterogeneous data relationships inherent in futures price-spread data. Traditional machine learning methods struggle to effectively mine these patterns, while conventional long short-term memory (LSTM) models lack focused feature prioritization and suffer from suboptimal hyperparameter selection. This article proposes the Improved Grey Wolf Optimizer with Multi-headed Self-attention and LSTM (IGML) model, which integrates a multi-head self-attention mechanism to enhance feature interaction and introduces an improved grey wolf optimizer (IGWO) with four strategic enhancements for automated hyperparameter tuning. Benchmark tests on optimization problems validate IGWO's superior convergence efficiency. Evaluated on real futures price-spread datasets, the IGML reduces mean square error (RMSE) and mean absolute error (MAE) by up to 88% and 85%, respectively, compared to baseline models, demonstrating its practical efficacy in capturing intricate financial market dynamics.

基于注意力驱动优化LSTM网络的期货价差预测:集成改进的灰狼优化算法以提高准确性。
由于期货价差数据固有的复杂的时间依赖性和异构数据关系,金融市场预测面临重大挑战。传统的机器学习方法难以有效地挖掘这些模式,而传统的长短期记忆(LSTM)模型缺乏集中的特征优先级,并且遭受次优超参数选择的影响。本文提出了带有多头自注意和LSTM (IGML)模型的改进灰狼优化器,该优化器集成了多头自注意机制以增强特征交互,并引入了带有四种策略增强的改进灰狼优化器(IGWO)来实现自动超参数调优。对优化问题的基准测试验证了IGWO优越的收敛效率。在真实期货价差数据集上进行评估后,与基线模型相比,IGML分别将均方误差(RMSE)和平均绝对误差(MAE)降低了88%和85%,证明了其在捕捉复杂金融市场动态方面的实际功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信