{"title":"GAPNet: Single and multiplant leaf disease classification method based on simplified SqueezeNet for grape, apple and potato plants.","authors":"Özge Nur Özaras, Asuman Günay Yılmaz","doi":"10.7717/peerj-cs.2941","DOIUrl":null,"url":null,"abstract":"<p><p>Humans need food to sustain their lives. Therefore, agriculture is one of the most important issues in nations. Agriculture also plays a major role in the economic development of countries by increasing economic income. Early diagnosis of plant diseases is crucial for agricultural productivity and continuity. Early disease detection directly impacts the quality and quantity of crops. For this reason, many studies have been carried out on plant leaf disease classification. In this study, a simple and effective leaf disease classification method was developed. Disease classification was performed using seven state-of-the-art pretrained convolutional neural network architectures: VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121 and MobileNetV2. A simplified SqueezeNet model, GAPNet, was subsequently proposed for grape, apple and potato leaf disease classification. GAPNet was designed to be a lightweight and fast model with 337.872 parameters. To address the data imbalance between classes, oversampling was carried out using the synthetic minority oversampling technique. The proposed model achieves accuracy rates of 99.72%, 99.53%, and 99.83% for grape, apple and potato leaf disease classification, respectively. A success rate of 99.64% was achieved in multiplant leaf disease classification when the grape, apple and potato datasets were combined. Compared with the state-of-the-art methods, the lightweight GAPNet model produces promising results for various plant species.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2941"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2941","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Humans need food to sustain their lives. Therefore, agriculture is one of the most important issues in nations. Agriculture also plays a major role in the economic development of countries by increasing economic income. Early diagnosis of plant diseases is crucial for agricultural productivity and continuity. Early disease detection directly impacts the quality and quantity of crops. For this reason, many studies have been carried out on plant leaf disease classification. In this study, a simple and effective leaf disease classification method was developed. Disease classification was performed using seven state-of-the-art pretrained convolutional neural network architectures: VGG16, ResNet50, SqueezeNet, Xception, ShuffleNet, DenseNet121 and MobileNetV2. A simplified SqueezeNet model, GAPNet, was subsequently proposed for grape, apple and potato leaf disease classification. GAPNet was designed to be a lightweight and fast model with 337.872 parameters. To address the data imbalance between classes, oversampling was carried out using the synthetic minority oversampling technique. The proposed model achieves accuracy rates of 99.72%, 99.53%, and 99.83% for grape, apple and potato leaf disease classification, respectively. A success rate of 99.64% was achieved in multiplant leaf disease classification when the grape, apple and potato datasets were combined. Compared with the state-of-the-art methods, the lightweight GAPNet model produces promising results for various plant species.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.