A malware detection method with function parameters encoding and function dependency modeling.

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
PeerJ Computer Science Pub Date : 2025-06-13 eCollection Date: 2025-01-01 DOI:10.7717/peerj-cs.2946
Ronghao Hou, Dongjie Liu, Xiaobo Jin, Jian Weng, Guanggang Geng
{"title":"A malware detection method with function parameters encoding and function dependency modeling.","authors":"Ronghao Hou, Dongjie Liu, Xiaobo Jin, Jian Weng, Guanggang Geng","doi":"10.7717/peerj-cs.2946","DOIUrl":null,"url":null,"abstract":"<p><p>As computers are widely used in people's work and daily lives, malware has become an increasing threat to network security. Although researchers have introduced traditional machine learning and deep learning methods to conduct extensive research on functions in malware detection, these methods have largely ignored the analysis of function parameters and functional dependencies. To address these limitations, we propose a new malware detection method. Specifically, we first design a parameter encoder to convert various types of function parameters into feature vectors, and then discretize various parameter features through clustering methods to enhance the representation of API encoding. Additionally, we design a deep neural network to capture functional dependencies, enabling the generation of robust semantic representations of function sequences. Experiments on a large-scale malware detection dataset demonstrate that our method outperforms other techniques, achieving 98.62% accuracy and a 98.40% F1-score. Furthermore, the results of ablation experiments show the important role of function parameters and functional dependencies in malware detection.</p>","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"11 ","pages":"e2946"},"PeriodicalIF":3.5000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12193421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2946","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As computers are widely used in people's work and daily lives, malware has become an increasing threat to network security. Although researchers have introduced traditional machine learning and deep learning methods to conduct extensive research on functions in malware detection, these methods have largely ignored the analysis of function parameters and functional dependencies. To address these limitations, we propose a new malware detection method. Specifically, we first design a parameter encoder to convert various types of function parameters into feature vectors, and then discretize various parameter features through clustering methods to enhance the representation of API encoding. Additionally, we design a deep neural network to capture functional dependencies, enabling the generation of robust semantic representations of function sequences. Experiments on a large-scale malware detection dataset demonstrate that our method outperforms other techniques, achieving 98.62% accuracy and a 98.40% F1-score. Furthermore, the results of ablation experiments show the important role of function parameters and functional dependencies in malware detection.

基于函数参数编码和函数依赖建模的恶意软件检测方法。
随着计算机在人们工作和生活中的广泛应用,恶意软件对网络安全的威胁越来越大。虽然研究人员已经引入传统的机器学习和深度学习方法对恶意软件检测中的功能进行了广泛的研究,但这些方法在很大程度上忽略了对功能参数和功能依赖关系的分析。为了解决这些限制,我们提出了一种新的恶意软件检测方法。具体而言,我们首先设计一个参数编码器,将各种类型的函数参数转换为特征向量,然后通过聚类方法将各种参数特征离散化,以增强API编码的表征性。此外,我们设计了一个深度神经网络来捕获功能依赖关系,从而能够生成功能序列的鲁棒语义表示。在大型恶意软件检测数据集上的实验表明,我们的方法优于其他技术,准确率达到98.62%,f1得分达到98.40%。此外,消融实验结果表明,功能参数和功能依赖关系在恶意软件检测中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信