The ESCRT component FYVE4 modulates salt-stress response by strengthening the SOS1-SOS2 interaction in Arabidopsis.

IF 11.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Plant Communications Pub Date : 2025-09-08 Epub Date: 2025-06-24 DOI:10.1016/j.xplc.2025.101428
Chuanliang Liu, Xinyi Lin, Min Xu, Zhao Zheng, Zhenghao Wang, Xin Huang, Feihua Wu, Guoyong Liu, Weijie Liu, Changlian Peng, Yan Guo, Yixiong Zheng, Caiji Gao, Wenjin Shen, Hongbo Li
{"title":"The ESCRT component FYVE4 modulates salt-stress response by strengthening the SOS1-SOS2 interaction in Arabidopsis.","authors":"Chuanliang Liu, Xinyi Lin, Min Xu, Zhao Zheng, Zhenghao Wang, Xin Huang, Feihua Wu, Guoyong Liu, Weijie Liu, Changlian Peng, Yan Guo, Yixiong Zheng, Caiji Gao, Wenjin Shen, Hongbo Li","doi":"10.1016/j.xplc.2025.101428","DOIUrl":null,"url":null,"abstract":"<p><p>The plant-specific FYVE-domain-containing protein FYVE4, a component of the endosomal sorting complex required for transport III (ESCRT-III), participates in membrane protein sorting. However, the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear. In this study, we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive (SOS) signaling pathway. FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress. Loss of FYVE4 reduces the SOS1-SOS2 association, leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress. Notably, overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1, whereas SOS2 overexpression does. In summary, our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses, extending beyond its established role in membrane trafficking regulation.</p>","PeriodicalId":52373,"journal":{"name":"Plant Communications","volume":" ","pages":"101428"},"PeriodicalIF":11.6000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12447447/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.xplc.2025.101428","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The plant-specific FYVE-domain-containing protein FYVE4, a component of the endosomal sorting complex required for transport III (ESCRT-III), participates in membrane protein sorting. However, the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear. In this study, we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive (SOS) signaling pathway. FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress. Loss of FYVE4 reduces the SOS1-SOS2 association, leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress. Notably, overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1, whereas SOS2 overexpression does. In summary, our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses, extending beyond its established role in membrane trafficking regulation.

拟南芥ESCRT组分FYVE4通过加强SOS1-SOS2相互作用调节盐胁迫响应。
植物特异性FYVE结构域蛋白FYVE4,作为运输所需的内体分选复合体(ESCRT-III)的一个组成部分,参与膜蛋白分选。然而,FYVE4调控植物生长对环境胁迫反应的机制尚不清楚。在这项研究中,我们揭示了FYVE4通过操纵盐过度敏感(SOS)信号通路积极调节植物盐抗性的新功能。在盐胁迫下,FYVE4通过促进SOS1- sos2相互作用影响SOS1磷酸化。FYVE4的缺失削弱了SOS1- sos2的关联,从而导致SOS1磷酸化降低,提高了植物对盐胁迫的敏感性。重要的是,SOS1过表达不能挽救fyve4-1的盐敏感性,而SOS2过表达可以。总之,我们的研究强调了FYVE4在增强SOS1-SOS2相互作用以减轻盐胁迫中的关键作用,并揭示了其参与非生物胁迫反应的新方面,超出了膜运输调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Communications
Plant Communications Agricultural and Biological Sciences-Plant Science
CiteScore
15.70
自引率
5.70%
发文量
105
审稿时长
6 weeks
期刊介绍: Plant Communications is an open access publishing platform that supports the global plant science community. It publishes original research, review articles, technical advances, and research resources in various areas of plant sciences. The scope of topics includes evolution, ecology, physiology, biochemistry, development, reproduction, metabolism, molecular and cellular biology, genetics, genomics, environmental interactions, biotechnology, breeding of higher and lower plants, and their interactions with other organisms. The goal of Plant Communications is to provide a high-quality platform for the dissemination of plant science research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信