{"title":"Mitochondrial fission regulator 2 promotes cell proliferation, migration and invasion in hepatocellular carcinoma through regulating PI3K/AKT signaling pathway.","authors":"Qiang Sun, Kaikun Liu, Fangjie Zheng, Xinwei Chen","doi":"10.1186/s13008-025-00160-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Mitochondrial fission regulator 2 (MTFR2) is upregulated in multiple cancers, including hepatocellular carcinoma (HCC); however, its mechanistic role in HCC progression remains poorly understood.</p><p><strong>Methods: </strong>MTFR2 expression in HCC tissues was analyzed using TCGA and GEO databases. Validation of MTFR2 expression levels in clinical samples and HCC cell lines was performed through qRT-PCR and western blot. Functional effects of MTFR2 overexpression and knockdown on HCC cell proliferation, migration, and invasion were assessed via CCK-8, colony formation, wound healing, and transwell assays. In vivo tumor growth was evaluated in xenograft mouse models.</p><p><strong>Results: </strong>MTFR2 was significantly overexpressed in HCC tissues and cell lines. Enhanced proliferation, migration, invasion, and colony formation were observed in MTFR2-overexpressing HCC cells, whereas knockdown of MTFR2 suppressed these malignant phenotypes. Mechanistic studies demonstrated that MTFR2 promotes proliferation, migration, and invasion of HCC cells via the PI3K/AKT signaling pathway. Additionally, MTFR2 knockdown significantly attenuated tumor growth in xenograft models.</p><p><strong>Conclusion: </strong>These findings demonstrate that MTFR2 promotes HCC progression via modulation of the PI3K/AKT pathway, underscoring its potential as a therapeutic target for HCC.</p>","PeriodicalId":49263,"journal":{"name":"Cell Division","volume":"20 1","pages":"16"},"PeriodicalIF":2.2000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12199495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Division","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13008-025-00160-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Mitochondrial fission regulator 2 (MTFR2) is upregulated in multiple cancers, including hepatocellular carcinoma (HCC); however, its mechanistic role in HCC progression remains poorly understood.
Methods: MTFR2 expression in HCC tissues was analyzed using TCGA and GEO databases. Validation of MTFR2 expression levels in clinical samples and HCC cell lines was performed through qRT-PCR and western blot. Functional effects of MTFR2 overexpression and knockdown on HCC cell proliferation, migration, and invasion were assessed via CCK-8, colony formation, wound healing, and transwell assays. In vivo tumor growth was evaluated in xenograft mouse models.
Results: MTFR2 was significantly overexpressed in HCC tissues and cell lines. Enhanced proliferation, migration, invasion, and colony formation were observed in MTFR2-overexpressing HCC cells, whereas knockdown of MTFR2 suppressed these malignant phenotypes. Mechanistic studies demonstrated that MTFR2 promotes proliferation, migration, and invasion of HCC cells via the PI3K/AKT signaling pathway. Additionally, MTFR2 knockdown significantly attenuated tumor growth in xenograft models.
Conclusion: These findings demonstrate that MTFR2 promotes HCC progression via modulation of the PI3K/AKT pathway, underscoring its potential as a therapeutic target for HCC.
期刊介绍:
Cell Division is an open access, peer-reviewed journal that encompasses all the molecular aspects of cell cycle control and cancer, cell growth, proliferation, survival, differentiation, signalling, gene transcription, protein synthesis, genome integrity, chromosome stability, centrosome duplication, DNA damage and DNA repair.
Cell Division provides an online forum for the cell-cycle community that aims to publish articles on all exciting aspects of cell-cycle research and to bridge the gap between models of cell cycle regulation, development, and cancer biology. This forum is driven by specialized and timely research articles, reviews and commentaries focused on this fast moving field, providing an invaluable tool for cell-cycle biologists.
Cell Division publishes articles in areas which includes, but not limited to:
DNA replication, cell fate decisions, cell cycle & development
Cell proliferation, mitosis, spindle assembly checkpoint, ubiquitin mediated degradation
DNA damage & repair
Apoptosis & cell death