[Fatigue driving detection based on prefrontal electroencephalogram asymptotic hierarchical fusion network].

Q4 Medicine
Jiazheng Sun, Weimin Li, Ningling Zhang, Cai Chen, Shengzhe Wang, Fulai Peng
{"title":"[Fatigue driving detection based on prefrontal electroencephalogram asymptotic hierarchical fusion network].","authors":"Jiazheng Sun, Weimin Li, Ningling Zhang, Cai Chen, Shengzhe Wang, Fulai Peng","doi":"10.7507/1001-5515.202407083","DOIUrl":null,"url":null,"abstract":"<p><p>Fatigue driving is one of the leading causes of traffic accidents, posing a significant threat to drivers and road safety. Most existing methods focus on studying whole-brain multi-channel electroencephalogram (EEG) signals, which involve a large number of channels, complex data processing, and cumbersome wearable devices. To address this issue, this paper proposes a fatigue detection method based on frontal EEG signals and constructs a fatigue driving detection model using an asymptotic hierarchical fusion network. The model employed a hierarchical fusion strategy, integrating an attention mechanism module into the multi-level convolutional module. By utilizing both cross-attention and self-attention mechanisms, it effectively fused the hierarchical semantic features of power spectral density (PSD) and differential entropy (DE), enhancing the learning of feature dependencies and interactions. Experimental validation was conducted on the public SEED-VIG dataset. The proposed model achieved an accuracy of 89.80% using only four frontal EEG channels. Comparative experiments with existing methods demonstrate that the proposed model achieves high accuracy and superior practicality, providing valuable technical support for fatigue driving monitoring and prevention.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 3","pages":"544-551"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202407083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Fatigue driving is one of the leading causes of traffic accidents, posing a significant threat to drivers and road safety. Most existing methods focus on studying whole-brain multi-channel electroencephalogram (EEG) signals, which involve a large number of channels, complex data processing, and cumbersome wearable devices. To address this issue, this paper proposes a fatigue detection method based on frontal EEG signals and constructs a fatigue driving detection model using an asymptotic hierarchical fusion network. The model employed a hierarchical fusion strategy, integrating an attention mechanism module into the multi-level convolutional module. By utilizing both cross-attention and self-attention mechanisms, it effectively fused the hierarchical semantic features of power spectral density (PSD) and differential entropy (DE), enhancing the learning of feature dependencies and interactions. Experimental validation was conducted on the public SEED-VIG dataset. The proposed model achieved an accuracy of 89.80% using only four frontal EEG channels. Comparative experiments with existing methods demonstrate that the proposed model achieves high accuracy and superior practicality, providing valuable technical support for fatigue driving monitoring and prevention.

[基于前额叶脑电图渐近层次融合网络的疲劳驾驶检测]。
疲劳驾驶是导致交通事故的主要原因之一,对驾驶员和道路安全构成重大威胁。现有的方法大多集中在全脑多通道脑电图信号的研究上,涉及的通道多、数据处理复杂、可穿戴设备繁琐。针对这一问题,本文提出了一种基于额叶脑电信号的疲劳检测方法,并利用渐近层次融合网络构建了疲劳驾驶检测模型。该模型采用分层融合策略,将注意机制模块集成到多层卷积模块中。通过交叉注意和自注意机制,有效融合了功率谱密度(PSD)和微分熵(DE)的层次语义特征,增强了特征依赖和交互的学习。在SEED-VIG公共数据集上进行了实验验证。该模型仅使用4个额叶脑电信号通道,准确率达到89.80%。与现有方法的对比实验表明,该模型具有较高的精度和较好的实用性,为疲劳驾驶监测与预防提供了有价值的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信