{"title":"CAF-derived LRRC15 orchestrates macrophage polarization and limits PD-1 immunotherapy efficacy in glioblastoma.","authors":"Feifei Luo, Yan Mei, Yanwen Li, Jiahao Yang, Shaoyan Xi, Endong Cao, Cong Shen, Dexiang Zhou, Peng Wang, Dong Zhou, Haiping Cai","doi":"10.1093/neuonc/noaf157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The effectiveness of PD-1/PD-L1 immune checkpoint blockade therapy in glioblastoma (GBM) is limited due to the tumor immunosuppressive microenvironment (TIME). Therefore, strategies of reprogramming TIME to a proinflammatory state offers a promising therapeutic approach.</p><p><strong>Methods: </strong>We applied bioinformatics analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (stRNA-seq) to identify a significant accumulation of a cancer-associated fibroblasts (CAFs) subcluster with elevated LRRC15 expression in the nonresponders to anti-PD-1 therapy. Molecular mechanism of LRRC15 were functionally validated in vitro and in vivo.</p><p><strong>Results: </strong>These CAFs subcluster drive the infiltration of macrophages (Mφ) into the tumor microenvironment and promote their polarization toward the M2 phenotype. Deletion of Lrrc15 in CAFs significantly restrained tumor growth and prolonged survival in mouse models. Mechanistically, LRRC15 in CAFs promotes IL8 expression by activating the downstream FAK/SRC/NF-κB pathways, leading to Mφ migration and M2-like polarization. In turn, M2-like Mφs secrete TGF-β, which induces LRRC15 expression in CAFs via SMAD2-dependent transcriptional activation. Targeting CAFs subcluster with elevated LRRC15 expression in combination with anti-PD-1 treatment enhanced antitumor efficacy.</p><p><strong>Conclusions: </strong>Our findings suggest that targeting LRRC15 may provide a novel strategy to augment anti-PD-1 therapy and overcome immunotherapy resistance in GBM.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noaf157","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The effectiveness of PD-1/PD-L1 immune checkpoint blockade therapy in glioblastoma (GBM) is limited due to the tumor immunosuppressive microenvironment (TIME). Therefore, strategies of reprogramming TIME to a proinflammatory state offers a promising therapeutic approach.
Methods: We applied bioinformatics analysis of single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (stRNA-seq) to identify a significant accumulation of a cancer-associated fibroblasts (CAFs) subcluster with elevated LRRC15 expression in the nonresponders to anti-PD-1 therapy. Molecular mechanism of LRRC15 were functionally validated in vitro and in vivo.
Results: These CAFs subcluster drive the infiltration of macrophages (Mφ) into the tumor microenvironment and promote their polarization toward the M2 phenotype. Deletion of Lrrc15 in CAFs significantly restrained tumor growth and prolonged survival in mouse models. Mechanistically, LRRC15 in CAFs promotes IL8 expression by activating the downstream FAK/SRC/NF-κB pathways, leading to Mφ migration and M2-like polarization. In turn, M2-like Mφs secrete TGF-β, which induces LRRC15 expression in CAFs via SMAD2-dependent transcriptional activation. Targeting CAFs subcluster with elevated LRRC15 expression in combination with anti-PD-1 treatment enhanced antitumor efficacy.
Conclusions: Our findings suggest that targeting LRRC15 may provide a novel strategy to augment anti-PD-1 therapy and overcome immunotherapy resistance in GBM.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.