Identification of Gene Expression Biomarkers Predictive of Latent Tuberculosis Infection Using Machine Learning Approaches.

IF 2.8 3区 生物学 Q2 GENETICS & HEREDITY
Genes Pub Date : 2025-06-18 DOI:10.3390/genes16060715
Youssra Boumait, Boutaina Ettetuani, Manal Chrairi, Afaf Lamzouri, Rajaa Chahboune
{"title":"Identification of Gene Expression Biomarkers Predictive of Latent Tuberculosis Infection Using Machine Learning Approaches.","authors":"Youssra Boumait, Boutaina Ettetuani, Manal Chrairi, Afaf Lamzouri, Rajaa Chahboune","doi":"10.3390/genes16060715","DOIUrl":null,"url":null,"abstract":"<p><p>Latent tuberculosis infection (LTBi) affects nearly a quarter of the global population, yet current diagnostic methods are limited by low sensitivity and specificity. This study applied an integrative bioinformatics framework, incorporating machine learning techniques, to identify robust gene expression biomarkers associated with LTBi. We analyzed four publicly available transcriptomic datasets from peripheral blood mononuclear cells (PBMCs), representing latent, active, and healthy states. Differentially expressed genes (DEGs) were identified, followed by gene ontology (GO) enrichment, functional clustering, and miRNA interaction analysis. Semantic similarity, unsupervised clustering, and pathway enrichment were applied to refine the gene list. Key biomarkers were prioritized using receiver operating characteristic (ROC) curve analysis, with CCL2 and CXCL10 emerging as top candidates (AUC > 0.85). This multi-step approach demonstrates the potential of combining transcriptomic profiling with established machine learning and bioinformatics tools to uncover candidate biomarkers for improved LTBi detection, and it also provides a foundation for future experimental validation.</p>","PeriodicalId":12688,"journal":{"name":"Genes","volume":"16 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/genes16060715","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Latent tuberculosis infection (LTBi) affects nearly a quarter of the global population, yet current diagnostic methods are limited by low sensitivity and specificity. This study applied an integrative bioinformatics framework, incorporating machine learning techniques, to identify robust gene expression biomarkers associated with LTBi. We analyzed four publicly available transcriptomic datasets from peripheral blood mononuclear cells (PBMCs), representing latent, active, and healthy states. Differentially expressed genes (DEGs) were identified, followed by gene ontology (GO) enrichment, functional clustering, and miRNA interaction analysis. Semantic similarity, unsupervised clustering, and pathway enrichment were applied to refine the gene list. Key biomarkers were prioritized using receiver operating characteristic (ROC) curve analysis, with CCL2 and CXCL10 emerging as top candidates (AUC > 0.85). This multi-step approach demonstrates the potential of combining transcriptomic profiling with established machine learning and bioinformatics tools to uncover candidate biomarkers for improved LTBi detection, and it also provides a foundation for future experimental validation.

使用机器学习方法识别预测潜伏性结核感染的基因表达生物标志物。
潜伏性结核感染(LTBi)影响了全球近四分之一的人口,但目前的诊断方法受低敏感性和特异性的限制。本研究应用综合生物信息学框架,结合机器学习技术,鉴定与LTBi相关的稳健基因表达生物标志物。我们分析了来自外周血单个核细胞(PBMCs)的四个公开可用的转录组数据集,分别代表潜伏、活跃和健康状态。鉴定差异表达基因(DEGs),然后进行基因本体(GO)富集、功能聚类和miRNA相互作用分析。采用语义相似、无监督聚类和途径富集等方法来完善基因列表。使用受试者工作特征(ROC)曲线分析对关键生物标志物进行优先排序,CCL2和CXCL10成为首选候选物(AUC > 0.85)。这种多步骤方法展示了将转录组分析与已建立的机器学习和生物信息学工具相结合的潜力,可以发现用于改进LTBi检测的候选生物标志物,并为未来的实验验证奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genes
Genes GENETICS & HEREDITY-
CiteScore
5.20
自引率
5.70%
发文量
1975
审稿时长
22.94 days
期刊介绍: Genes (ISSN 2073-4425) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to genes, genetics and genomics. It publishes reviews, research articles, communications and technical notes. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信