Xiangyang Wang, Linsen Ye, Shanshan Liu, Yuhao Zheng, Lisi Zhu, Wenqian Huang, Jiawei Song, Jingxuan Shao, Fan Wu, Chunmin Zhang, Xiaomin Li, Shan Zeng, Youjun Xiao, Xiangyu Chen, Shunjun Fu, Lilin Ye, Jie Zhou, Yingjiao Cao
{"title":"FXR inhibition functions as a checkpoint blockade of the pathogenic Tfh cell response in lupus.","authors":"Xiangyang Wang, Linsen Ye, Shanshan Liu, Yuhao Zheng, Lisi Zhu, Wenqian Huang, Jiawei Song, Jingxuan Shao, Fan Wu, Chunmin Zhang, Xiaomin Li, Shan Zeng, Youjun Xiao, Xiangyu Chen, Shunjun Fu, Lilin Ye, Jie Zhou, Yingjiao Cao","doi":"10.1038/s41423-025-01309-3","DOIUrl":null,"url":null,"abstract":"<p><p>T follicular helper (Tfh) cells specialize in facilitating germinal center B-cell activation and high-affinity antibody generation, which are crucial in humoral immune responses. However, aberrant control of Tfh cells also contributes to the generation of self-reactive autoantibodies and promotes autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanisms that control proper Tfh expansion remain unclear. Here, we show that farnesoid X receptor (FXR) is relatively upregulated in Tfh cells. Genetic deletion of Fxr restrains Tfh expansion both at steady state and in pristane-induced lupus. As a consequence of these defects, mice lacking Fxr manifested GC dysfunction and decreased plasma cell and autoantibody production, which alleviated nephritis progression in pristane-induced lupus. Mechanistically, FXR intrinsically regulates cholesterol homeostasis in Tfh cells, which subsequently controls Tfh cell proliferation. Preclinical treatment of wild-type (WT) mice with the clinically approved drug ursodeoxycholic acid (UDCA) to reduce FXR signaling mitigated lupus disease progression by repressing Tfh expansion, the GC reaction and autoantibody production. These findings provide a rationale for exploring FXR as a potential therapeutic target for SLE.</p>","PeriodicalId":9950,"journal":{"name":"Cellular &Molecular Immunology","volume":" ","pages":""},"PeriodicalIF":21.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular &Molecular Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41423-025-01309-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
T follicular helper (Tfh) cells specialize in facilitating germinal center B-cell activation and high-affinity antibody generation, which are crucial in humoral immune responses. However, aberrant control of Tfh cells also contributes to the generation of self-reactive autoantibodies and promotes autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanisms that control proper Tfh expansion remain unclear. Here, we show that farnesoid X receptor (FXR) is relatively upregulated in Tfh cells. Genetic deletion of Fxr restrains Tfh expansion both at steady state and in pristane-induced lupus. As a consequence of these defects, mice lacking Fxr manifested GC dysfunction and decreased plasma cell and autoantibody production, which alleviated nephritis progression in pristane-induced lupus. Mechanistically, FXR intrinsically regulates cholesterol homeostasis in Tfh cells, which subsequently controls Tfh cell proliferation. Preclinical treatment of wild-type (WT) mice with the clinically approved drug ursodeoxycholic acid (UDCA) to reduce FXR signaling mitigated lupus disease progression by repressing Tfh expansion, the GC reaction and autoantibody production. These findings provide a rationale for exploring FXR as a potential therapeutic target for SLE.
期刊介绍:
Cellular & Molecular Immunology, a monthly journal from the Chinese Society of Immunology and the University of Science and Technology of China, serves as a comprehensive platform covering both basic immunology research and clinical applications. The journal publishes a variety of article types, including Articles, Review Articles, Mini Reviews, and Short Communications, focusing on diverse aspects of cellular and molecular immunology.