Reona Okada, Jeyshka M Reyes-González, Constanza Rodriguez, Taisuke Kondo, Jangsuk Oh, Ming Sun, Michael C Kelly, Ling Zhang, James Gulley, Jack F Shern, Mitchell Ho, Christian S Hinrichs, Naomi N Taylor, Xiyuan Zhang, Rosa Nguyen
{"title":"GPC2-Targeted CAR T Cells Engineered with NFAT-Inducible Membrane-Tethered IL15/IL21 Exhibit Enhanced Activity against Neuroblastoma.","authors":"Reona Okada, Jeyshka M Reyes-González, Constanza Rodriguez, Taisuke Kondo, Jangsuk Oh, Ming Sun, Michael C Kelly, Ling Zhang, James Gulley, Jack F Shern, Mitchell Ho, Christian S Hinrichs, Naomi N Taylor, Xiyuan Zhang, Rosa Nguyen","doi":"10.1158/2326-6066.CIR-24-0975","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastoma is a highly aggressive childhood solid tumor with poor outcomes. Chimeric antigen receptor (CAR) T cells have shown limited efficacy in neuroblastoma, with the best outcomes reported in patients with a low tumor burden, highlighting the need for further CAR optimization. One approach to addressing the high tumor burden involves engineering CAR T cells to release or express transgenic cytokines. However, its systemic toxicity remains an important therapeutic challenge. In this study, we evaluated the efficacy of IL15- and IL21-enhanced glypican 2 (GPC2)-targeted CAR T cells (GPC2-CAR T cells) in targeting high-burden neuroblastoma. Three strategies for expressing the cytokines were evaluated: constitutive secretion (GPC2-CAR + sol.IL15.IL21), constitutive membrane-tethered expression (GPC2-CAR + teth.IL15.IL21), and NFAT-inducible membrane-tethered expression (GPC2-CAR + NFAT.IL15.IL21). Engineered GPC2-CAR T cells were tested in vitro and in vivo using high neuroblastoma burden xenograft models. Additionally, single-cell RNA sequencing was used to profile the effector cells in the tumor microenvironment. All three versions of GPC2-CAR T cells significantly enhanced killing against a high neuroblastoma burden, both in vitro and in vivo, relative to control GPC2-CAR T cells. Mice treated with GPC2-CAR + NFAT.IL15.IL21 exhibited significantly lower anorexia-associated morbidity/mortality. Supporting these data, tumor-infiltrating GPC2-CAR + NFAT.IL15.IL21 developed an immunosuppressive transcriptional profile upon tumor regression, leading to prolonged survival in treated mice. In contrast, GPC2-CAR + teth.IL15.IL21 maintained a proinflammatory transcriptional signature despite near tumor clearance, resulting in hypercytokinemia and death. NFAT-inducible co-expression of tethered IL15/IL21 enhanced GPC2-CAR T-cell function against a high neuroblastoma burden with acceptable tolerability in mice. Further studies are required to validate these findings.</p>","PeriodicalId":9474,"journal":{"name":"Cancer immunology research","volume":" ","pages":"1363-1373"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12278764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer immunology research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/2326-6066.CIR-24-0975","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroblastoma is a highly aggressive childhood solid tumor with poor outcomes. Chimeric antigen receptor (CAR) T cells have shown limited efficacy in neuroblastoma, with the best outcomes reported in patients with a low tumor burden, highlighting the need for further CAR optimization. One approach to addressing the high tumor burden involves engineering CAR T cells to release or express transgenic cytokines. However, its systemic toxicity remains an important therapeutic challenge. In this study, we evaluated the efficacy of IL15- and IL21-enhanced glypican 2 (GPC2)-targeted CAR T cells (GPC2-CAR T cells) in targeting high-burden neuroblastoma. Three strategies for expressing the cytokines were evaluated: constitutive secretion (GPC2-CAR + sol.IL15.IL21), constitutive membrane-tethered expression (GPC2-CAR + teth.IL15.IL21), and NFAT-inducible membrane-tethered expression (GPC2-CAR + NFAT.IL15.IL21). Engineered GPC2-CAR T cells were tested in vitro and in vivo using high neuroblastoma burden xenograft models. Additionally, single-cell RNA sequencing was used to profile the effector cells in the tumor microenvironment. All three versions of GPC2-CAR T cells significantly enhanced killing against a high neuroblastoma burden, both in vitro and in vivo, relative to control GPC2-CAR T cells. Mice treated with GPC2-CAR + NFAT.IL15.IL21 exhibited significantly lower anorexia-associated morbidity/mortality. Supporting these data, tumor-infiltrating GPC2-CAR + NFAT.IL15.IL21 developed an immunosuppressive transcriptional profile upon tumor regression, leading to prolonged survival in treated mice. In contrast, GPC2-CAR + teth.IL15.IL21 maintained a proinflammatory transcriptional signature despite near tumor clearance, resulting in hypercytokinemia and death. NFAT-inducible co-expression of tethered IL15/IL21 enhanced GPC2-CAR T-cell function against a high neuroblastoma burden with acceptable tolerability in mice. Further studies are required to validate these findings.
期刊介绍:
Cancer Immunology Research publishes exceptional original articles showcasing significant breakthroughs across the spectrum of cancer immunology. From fundamental inquiries into host-tumor interactions to developmental therapeutics, early translational studies, and comprehensive analyses of late-stage clinical trials, the journal provides a comprehensive view of the discipline. In addition to original research, the journal features reviews and opinion pieces of broad significance, fostering cross-disciplinary collaboration within the cancer research community. Serving as a premier resource for immunology knowledge in cancer research, the journal drives deeper insights into the host-tumor relationship, potent cancer treatments, and enhanced clinical outcomes.
Key areas of interest include endogenous antitumor immunity, tumor-promoting inflammation, cancer antigens, vaccines, antibodies, cellular therapy, cytokines, immune regulation, immune suppression, immunomodulatory effects of cancer treatment, emerging technologies, and insightful clinical investigations with immunological implications.