{"title":"Metabolism and Immune Suppressive Response in Liver Cancer.","authors":"Patrizio Caini, Vinicio Carloni","doi":"10.3390/biomedicines13061461","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) constitutes more than 90% of the primary tumor of the liver. Metabolic reprogramming is decisive in promoting HCC development. The new metabolic program drives the surrounding immune cells to an immune suppressive commitment, enabling tumor survival. The enhanced metabolic activity of cancer cells leads to competition for essential nutrients, depriving non-malignant cells of critical resources. Simultaneously, the accumulation of metabolic byproducts within the tumor microenvironment (TME) selectively favors innate immune responses while impairing adaptive immunity. Recent advances in cancer immunotherapy underscore the importance of targeting both immune cell function and metabolic pathways. In this context, reprogramming the metabolism of effector and regulatory immune cells represents a promising therapeutic avenue. This review focuses on a relatively underexplored aspect of liver cancer immunology, the immunosuppressive role of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) driven by metabolic alterations and how these mechanisms contribute to the suppression of effective anti-tumor immune responses.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13061461","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) constitutes more than 90% of the primary tumor of the liver. Metabolic reprogramming is decisive in promoting HCC development. The new metabolic program drives the surrounding immune cells to an immune suppressive commitment, enabling tumor survival. The enhanced metabolic activity of cancer cells leads to competition for essential nutrients, depriving non-malignant cells of critical resources. Simultaneously, the accumulation of metabolic byproducts within the tumor microenvironment (TME) selectively favors innate immune responses while impairing adaptive immunity. Recent advances in cancer immunotherapy underscore the importance of targeting both immune cell function and metabolic pathways. In this context, reprogramming the metabolism of effector and regulatory immune cells represents a promising therapeutic avenue. This review focuses on a relatively underexplored aspect of liver cancer immunology, the immunosuppressive role of tumor-associated macrophages (TAMs) and regulatory T cells (Tregs) driven by metabolic alterations and how these mechanisms contribute to the suppression of effective anti-tumor immune responses.
BiomedicinesBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍:
Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.