Beyond Bone Loss: A Biology Perspective on Osteoporosis Pathogenesis, Multi-Omics Approaches, and Interconnected Mechanisms.

IF 3.9 3区 工程技术 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yixin Zhao, Jihan Wang, Lijuan Xu, Haofeng Xu, Yu Yan, Heping Zhao, Yuzhu Yan
{"title":"Beyond Bone Loss: A Biology Perspective on Osteoporosis Pathogenesis, Multi-Omics Approaches, and Interconnected Mechanisms.","authors":"Yixin Zhao, Jihan Wang, Lijuan Xu, Haofeng Xu, Yu Yan, Heping Zhao, Yuzhu Yan","doi":"10.3390/biomedicines13061443","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is a systemic bone disorder characterized by decreased bone mass and deteriorated microarchitecture, leading to an increased risk of fractures. Recent studies have revealed that its pathogenesis involves complex biological processes beyond bone remodeling, including oxidative stress, chronic inflammation, cellular senescence, osteoimmunology, gut microbiota alterations, and epigenetic modifications. Oxidative stress disrupts bone homeostasis by promoting excessive free radical production and osteoclast activity. Chronic inflammation and the accumulation of senescent cells impair skeletal repair mechanisms. Advances in osteoimmunology have highlighted the critical role of immune-bone crosstalk in regulating bone resorption and formation. Moreover, the gut-bone axis, mediated by microbial metabolites, influences bone metabolism through immune and endocrine pathways. Epigenetic changes, such as DNA methylation and histone modification, contribute to gene-environment interactions, affecting disease progression. Multi-omics approaches (genomics, proteomics, and metabolomics) systematically identify molecular networks and comorbid links with diabetes/cardiovascular diseases, revealing pathological feedback loops that exacerbate bone loss. In conclusion, osteoporosis pathogenesis extends beyond bone remodeling to encompass systemic inflammation, immunometabolic dysregulation, and gut microbiota-host interactions. Future research should focus on integrating multi-omics biomarkers with targeted therapies to advance precision medicine strategies for osteoporosis prevention and treatment.</p>","PeriodicalId":8937,"journal":{"name":"Biomedicines","volume":"13 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12190919/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedicines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomedicines13061443","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoporosis is a systemic bone disorder characterized by decreased bone mass and deteriorated microarchitecture, leading to an increased risk of fractures. Recent studies have revealed that its pathogenesis involves complex biological processes beyond bone remodeling, including oxidative stress, chronic inflammation, cellular senescence, osteoimmunology, gut microbiota alterations, and epigenetic modifications. Oxidative stress disrupts bone homeostasis by promoting excessive free radical production and osteoclast activity. Chronic inflammation and the accumulation of senescent cells impair skeletal repair mechanisms. Advances in osteoimmunology have highlighted the critical role of immune-bone crosstalk in regulating bone resorption and formation. Moreover, the gut-bone axis, mediated by microbial metabolites, influences bone metabolism through immune and endocrine pathways. Epigenetic changes, such as DNA methylation and histone modification, contribute to gene-environment interactions, affecting disease progression. Multi-omics approaches (genomics, proteomics, and metabolomics) systematically identify molecular networks and comorbid links with diabetes/cardiovascular diseases, revealing pathological feedback loops that exacerbate bone loss. In conclusion, osteoporosis pathogenesis extends beyond bone remodeling to encompass systemic inflammation, immunometabolic dysregulation, and gut microbiota-host interactions. Future research should focus on integrating multi-omics biomarkers with targeted therapies to advance precision medicine strategies for osteoporosis prevention and treatment.

超越骨质流失:骨质疏松发病机制的生物学视角,多组学方法和相互关联的机制。
骨质疏松症是一种全身性骨疾病,其特征是骨量减少和微结构恶化,导致骨折风险增加。最近的研究表明,其发病机制涉及骨重塑以外的复杂生物学过程,包括氧化应激、慢性炎症、细胞衰老、骨免疫、肠道微生物群改变和表观遗传修饰。氧化应激通过促进过多的自由基产生和破骨细胞活性破坏骨稳态。慢性炎症和衰老细胞的积累损害骨骼修复机制。骨免疫学的研究进展表明免疫-骨串扰在调节骨吸收和骨形成中的重要作用。此外,肠道-骨轴由微生物代谢物介导,通过免疫和内分泌途径影响骨代谢。表观遗传变化,如DNA甲基化和组蛋白修饰,有助于基因-环境相互作用,影响疾病进展。多组学方法(基因组学、蛋白质组学和代谢组学)系统地确定了与糖尿病/心血管疾病的分子网络和共病联系,揭示了加剧骨质流失的病理反馈回路。总之,骨质疏松的发病机制超越了骨重塑,包括全身炎症、免疫代谢失调和肠道微生物与宿主的相互作用。未来的研究应集中于将多组学生物标志物与靶向治疗相结合,以推进骨质疏松预防和治疗的精准医学策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomedicines
Biomedicines Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
5.20
自引率
8.50%
发文量
2823
审稿时长
8 weeks
期刊介绍: Biomedicines (ISSN 2227-9059; CODEN: BIOMID) is an international, scientific, open access journal on biomedicines published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信