{"title":"Federated duelling deep Q-network based collaborative energy scheduling for a power distribution network","authors":"Yanhong Yang, Wei Pei, Tianyi Xu, Dawei Wang, Abdelbari Redouane","doi":"10.1049/enc2.70012","DOIUrl":null,"url":null,"abstract":"<p>The collaborative energy scheduling of source-load-energy storage has great potential to meet the active control requirements of power-distribution networks. In this study, a federated deep reinforcement learning framework was developed to facilitate collaborative energy scheduling and maximize the total economic benefit in a distribution network. Then, considering the application of Markov decision processes for energy scheduling, a spatial temporal graph convolutional network transformer based power generation packaging model for renewable energy sources was presented, and a collaborative energy scheduling strategy based on a federated duelling deep Q-network was designed. The simulation results indicate that the developed collaborative scheduling strategy can maximize the economic benefits of a power distribution network while ensuring data privacy.</p>","PeriodicalId":100467,"journal":{"name":"Energy Conversion and Economics","volume":"6 3","pages":"187-195"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/enc2.70012","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Economics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/enc2.70012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The collaborative energy scheduling of source-load-energy storage has great potential to meet the active control requirements of power-distribution networks. In this study, a federated deep reinforcement learning framework was developed to facilitate collaborative energy scheduling and maximize the total economic benefit in a distribution network. Then, considering the application of Markov decision processes for energy scheduling, a spatial temporal graph convolutional network transformer based power generation packaging model for renewable energy sources was presented, and a collaborative energy scheduling strategy based on a federated duelling deep Q-network was designed. The simulation results indicate that the developed collaborative scheduling strategy can maximize the economic benefits of a power distribution network while ensuring data privacy.