{"title":"Large Electrogyration Effect in Ferroaxial NiTiO3 at Near Infrared Wavelengths","authors":"Takeshi Hayashida, Koei Matsumoto, Tsuyoshi Kimura","doi":"10.1002/adom.202500364","DOIUrl":null,"url":null,"abstract":"<p>The linear electrogyration effect refers to optical rotation induced in proportion to an applied electric field. In comparison with other optical phenomena related to optical rotation, such as natural optical activity and the Faraday effect, the linear electrogyration effect is much less investigated because of the small magnitude of the electric field-induced rotation. In this study, a microscopic mechanism of the linear electrogyration effect is discussed and it is demonstrated that the effect in a ferroaxial crystal NiTiO<sub>3</sub> can be significantly pronounced at near infrared wavelengths where the magnetic dipole transitions are strong. Furthermore, it is shown that the effect is amplified in an artificial laminated structure in which the front and back sides of the ferroaxial crystal are laminated alternately with electrodes in between. It is expected this work stimulates further studies on electrogyration and its potential applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 18","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202500364","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500364","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The linear electrogyration effect refers to optical rotation induced in proportion to an applied electric field. In comparison with other optical phenomena related to optical rotation, such as natural optical activity and the Faraday effect, the linear electrogyration effect is much less investigated because of the small magnitude of the electric field-induced rotation. In this study, a microscopic mechanism of the linear electrogyration effect is discussed and it is demonstrated that the effect in a ferroaxial crystal NiTiO3 can be significantly pronounced at near infrared wavelengths where the magnetic dipole transitions are strong. Furthermore, it is shown that the effect is amplified in an artificial laminated structure in which the front and back sides of the ferroaxial crystal are laminated alternately with electrodes in between. It is expected this work stimulates further studies on electrogyration and its potential applications.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.