Intelligent Music Streaming Scheduling and QoE Optimization in 6G Wireless Networks Using Large-Scale Models

IF 0.5 Q4 TELECOMMUNICATIONS
Xudong Qiao
{"title":"Intelligent Music Streaming Scheduling and QoE Optimization in 6G Wireless Networks Using Large-Scale Models","authors":"Xudong Qiao","doi":"10.1002/itl2.70062","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we propose LM-QoEStream, a novel framework that integrates large-scale language models (LLMs) with reinforcement learning-based streaming scheduling to optimize music delivery under dynamic wireless conditions. Specifically, we design a prompt-driven Quality of Experience (QoE) prediction module that transforms heterogeneous user, content, and network features into structured natural language prompts, enabling the LLM to infer fine-grained user satisfaction scores. These scores are then used as rewards in a Soft Actor-Critic (SAC) reinforcement learning (RL) controller that dynamically adjusts streaming parameters such as bitrate and buffer strategies. Extensive experiments conducted on simulated 5G/6G networks with real-world content and user interaction traces demonstrate that LM-QoEStream significantly outperforms baseline methods in terms of average QoE, stall ratio, bitrate adaptation accuracy, and fairness. Ablation studies further confirm the complementary strengths of both the LLM-based perception model and the learning-based decision module. The proposed approach offers a scalable, generalizable, and user-centric solution for next-generation music streaming systems.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose LM-QoEStream, a novel framework that integrates large-scale language models (LLMs) with reinforcement learning-based streaming scheduling to optimize music delivery under dynamic wireless conditions. Specifically, we design a prompt-driven Quality of Experience (QoE) prediction module that transforms heterogeneous user, content, and network features into structured natural language prompts, enabling the LLM to infer fine-grained user satisfaction scores. These scores are then used as rewards in a Soft Actor-Critic (SAC) reinforcement learning (RL) controller that dynamically adjusts streaming parameters such as bitrate and buffer strategies. Extensive experiments conducted on simulated 5G/6G networks with real-world content and user interaction traces demonstrate that LM-QoEStream significantly outperforms baseline methods in terms of average QoE, stall ratio, bitrate adaptation accuracy, and fairness. Ablation studies further confirm the complementary strengths of both the LLM-based perception model and the learning-based decision module. The proposed approach offers a scalable, generalizable, and user-centric solution for next-generation music streaming systems.

基于大规模模型的6G无线网络智能音乐流调度和QoE优化
在本文中,我们提出了LM-QoEStream,这是一个将大规模语言模型(llm)与基于强化学习的流媒体调度集成在一起的新框架,以优化动态无线条件下的音乐传输。具体来说,我们设计了一个提示驱动的体验质量(QoE)预测模块,该模块将异构用户、内容和网络特征转换为结构化的自然语言提示,使LLM能够推断出细粒度的用户满意度得分。然后,这些分数被用作软演员-评论家(SAC)强化学习(RL)控制器的奖励,该控制器动态调整流参数,如比特率和缓冲策略。在具有真实内容和用户交互痕迹的模拟5G/6G网络上进行的大量实验表明,LM-QoEStream在平均QoE、失速率、比特率自适应精度和公平性方面显著优于基线方法。消融研究进一步证实了基于法学硕士的感知模型和基于学习的决策模块的互补优势。所提出的方法为下一代音乐流媒体系统提供了一个可扩展的、通用的、以用户为中心的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信