{"title":"Intelligent Music Streaming Scheduling and QoE Optimization in 6G Wireless Networks Using Large-Scale Models","authors":"Xudong Qiao","doi":"10.1002/itl2.70062","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we propose LM-QoEStream, a novel framework that integrates large-scale language models (LLMs) with reinforcement learning-based streaming scheduling to optimize music delivery under dynamic wireless conditions. Specifically, we design a prompt-driven Quality of Experience (QoE) prediction module that transforms heterogeneous user, content, and network features into structured natural language prompts, enabling the LLM to infer fine-grained user satisfaction scores. These scores are then used as rewards in a Soft Actor-Critic (SAC) reinforcement learning (RL) controller that dynamically adjusts streaming parameters such as bitrate and buffer strategies. Extensive experiments conducted on simulated 5G/6G networks with real-world content and user interaction traces demonstrate that LM-QoEStream significantly outperforms baseline methods in terms of average QoE, stall ratio, bitrate adaptation accuracy, and fairness. Ablation studies further confirm the complementary strengths of both the LLM-based perception model and the learning-based decision module. The proposed approach offers a scalable, generalizable, and user-centric solution for next-generation music streaming systems.</p>\n </div>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":"8 4","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.70062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we propose LM-QoEStream, a novel framework that integrates large-scale language models (LLMs) with reinforcement learning-based streaming scheduling to optimize music delivery under dynamic wireless conditions. Specifically, we design a prompt-driven Quality of Experience (QoE) prediction module that transforms heterogeneous user, content, and network features into structured natural language prompts, enabling the LLM to infer fine-grained user satisfaction scores. These scores are then used as rewards in a Soft Actor-Critic (SAC) reinforcement learning (RL) controller that dynamically adjusts streaming parameters such as bitrate and buffer strategies. Extensive experiments conducted on simulated 5G/6G networks with real-world content and user interaction traces demonstrate that LM-QoEStream significantly outperforms baseline methods in terms of average QoE, stall ratio, bitrate adaptation accuracy, and fairness. Ablation studies further confirm the complementary strengths of both the LLM-based perception model and the learning-based decision module. The proposed approach offers a scalable, generalizable, and user-centric solution for next-generation music streaming systems.