Carsten Strobel, Carlos A. Chavarin, Martin Knaut, Christian Wenger, André Heinzig, Thomas Mikolajick
{"title":"Demonstration of a Graphene Adjustable-Barriers Phototransistor with Tunable Ultra-High Responsivity","authors":"Carsten Strobel, Carlos A. Chavarin, Martin Knaut, Christian Wenger, André Heinzig, Thomas Mikolajick","doi":"10.1002/adom.202500344","DOIUrl":null,"url":null,"abstract":"<p>The development of high-speed dual-band photodetectors with high responsivity is important for several applications such as optical communication, biomedical imaging or spectroscopy. In this work, a phototransistor with ultra-high responsivity is demonstrated, which potentially also allows for very high bandwidths. The device is called graphene adjustable-barriers phototransistor and is potentially capable for dual-band detection in the visible-infrared (VIS-IR) range. A material combination of intrinsic hydrogenated amorphous silicon, graphene, and n-type germanium (n-Ge) is used for the demonstrator. The device operation is based on the light induced modulation of the graphene Fermi energy level and Schottky barrier heights. For the first time, the functional mechanism of the device is successfully demonstrated in the VIS range with responsivities exceeding 10<sup>7</sup> A/W at a gate voltage of 20V. The bandwidth of the device is 1.2 kHz and is so far limited by the defective gate material hydrogenated amorphous silicon and relaxed feature sizes of the demonstrator. These results are an important step toward a new generation of high-responsivity high-speed photo detection devices.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 18","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202500344","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202500344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of high-speed dual-band photodetectors with high responsivity is important for several applications such as optical communication, biomedical imaging or spectroscopy. In this work, a phototransistor with ultra-high responsivity is demonstrated, which potentially also allows for very high bandwidths. The device is called graphene adjustable-barriers phototransistor and is potentially capable for dual-band detection in the visible-infrared (VIS-IR) range. A material combination of intrinsic hydrogenated amorphous silicon, graphene, and n-type germanium (n-Ge) is used for the demonstrator. The device operation is based on the light induced modulation of the graphene Fermi energy level and Schottky barrier heights. For the first time, the functional mechanism of the device is successfully demonstrated in the VIS range with responsivities exceeding 107 A/W at a gate voltage of 20V. The bandwidth of the device is 1.2 kHz and is so far limited by the defective gate material hydrogenated amorphous silicon and relaxed feature sizes of the demonstrator. These results are an important step toward a new generation of high-responsivity high-speed photo detection devices.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.