{"title":"QECO: A QoE-Oriented Computation Offloading Algorithm Based on Deep Reinforcement Learning for Mobile Edge Computing","authors":"Iman Rahmaty;Hamed Shah-Mansouri;Ali Movaghar","doi":"10.1109/TNSE.2025.3556809","DOIUrl":null,"url":null,"abstract":"In the realm of mobile edge computing (MEC), efficient computation task offloading plays a pivotal role in ensuring a seamless quality of experience (QoE) for users. Maintaining a high QoE is paramount in today's interconnected world, where users demand reliable services. This challenge stands as one of the most primary key factors contributing to handling dynamic and uncertain mobile environments. In this study, we delve into computation offloading in MEC systems, where strict task processing deadlines and energy constraints can adversely affect the system performance. We formulate the computation task offloading problem as a Markov decision process (MDP) to maximize the long-term QoE of each user individually. We propose a distributed QoE-oriented computation offloading (QECO) algorithm based on deep reinforcement learning (DRL) that empowers mobile devices to make their offloading decisions without requiring knowledge of decisions made by other devices. Through numerical studies, we evaluate the performance of QECO. Simulation results reveal that compared to the state-of-the-art existing works, QECO increases the number of completed tasks by up to 14.4%, while simultaneously reducing task delay and energy consumption by 9.2% and 6.3%, respectively. Together, these improvements result in a significant average QoE enhancement of 37.1%. This substantial improvement is achieved by accurately accounting for user dynamics and edge server workloads when making intelligent offloading decisions. This highlights QECO's effectiveness in enhancing users' experience in MEC systems.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"12 4","pages":"3118-3130"},"PeriodicalIF":6.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10946841/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of mobile edge computing (MEC), efficient computation task offloading plays a pivotal role in ensuring a seamless quality of experience (QoE) for users. Maintaining a high QoE is paramount in today's interconnected world, where users demand reliable services. This challenge stands as one of the most primary key factors contributing to handling dynamic and uncertain mobile environments. In this study, we delve into computation offloading in MEC systems, where strict task processing deadlines and energy constraints can adversely affect the system performance. We formulate the computation task offloading problem as a Markov decision process (MDP) to maximize the long-term QoE of each user individually. We propose a distributed QoE-oriented computation offloading (QECO) algorithm based on deep reinforcement learning (DRL) that empowers mobile devices to make their offloading decisions without requiring knowledge of decisions made by other devices. Through numerical studies, we evaluate the performance of QECO. Simulation results reveal that compared to the state-of-the-art existing works, QECO increases the number of completed tasks by up to 14.4%, while simultaneously reducing task delay and energy consumption by 9.2% and 6.3%, respectively. Together, these improvements result in a significant average QoE enhancement of 37.1%. This substantial improvement is achieved by accurately accounting for user dynamics and edge server workloads when making intelligent offloading decisions. This highlights QECO's effectiveness in enhancing users' experience in MEC systems.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.