SLYKLatent: A Learning Framework for Gaze Estimation Using Deep Facial Feature Learning

IF 4.4 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Samuel Adebayo;Joost C. Dessing;Seán McLoone
{"title":"SLYKLatent: A Learning Framework for Gaze Estimation Using Deep Facial Feature Learning","authors":"Samuel Adebayo;Joost C. Dessing;Seán McLoone","doi":"10.1109/THMS.2025.3553404","DOIUrl":null,"url":null,"abstract":"In this research, we present self-learn your key latent (SLYKLatent), a novel approach for enhancing gaze estimation by addressing appearance instability challenges in datasets due to aleatoric uncertainties, covariant shifts, and test domain generalization. SLYKLatent utilizes self-supervised learning for initial training with facial expression datasets, followed by refinement with a patch-based tribranch network and an inverse explained variance weighted training loss function. Our evaluation on benchmark datasets achieves a 10.98% improvement on Gaze360, supersedes the top result with 3.83% improvement on MPIIFaceGaze, and leads on a subset of ETH-XGaze by 11.59%, surpassing existing methods by significant margins. In addition, adaptability tests on RAF-DB and Affectnet show 86.4% and 60.9% accuracies, respectively. Ablation studies confirm the effectiveness of SLYKLatent's novel components. This approach has strong potential in human–robot interaction.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"55 3","pages":"333-346"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10982270/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we present self-learn your key latent (SLYKLatent), a novel approach for enhancing gaze estimation by addressing appearance instability challenges in datasets due to aleatoric uncertainties, covariant shifts, and test domain generalization. SLYKLatent utilizes self-supervised learning for initial training with facial expression datasets, followed by refinement with a patch-based tribranch network and an inverse explained variance weighted training loss function. Our evaluation on benchmark datasets achieves a 10.98% improvement on Gaze360, supersedes the top result with 3.83% improvement on MPIIFaceGaze, and leads on a subset of ETH-XGaze by 11.59%, surpassing existing methods by significant margins. In addition, adaptability tests on RAF-DB and Affectnet show 86.4% and 60.9% accuracies, respectively. Ablation studies confirm the effectiveness of SLYKLatent's novel components. This approach has strong potential in human–robot interaction.
基于深度面部特征学习的注视估计学习框架
在这项研究中,我们提出了自学习关键潜(SLYKLatent),这是一种通过解决由于任意不确定性、协变移位和测试域泛化而导致的数据集中的外观不稳定性挑战来增强凝视估计的新方法。SLYKLatent利用自监督学习对面部表情数据集进行初始训练,然后使用基于补丁的三分支网络和逆解释方差加权训练损失函数进行细化。我们在基准数据集上的评估在Gaze360上实现了10.98%的改进,在MPIIFaceGaze上取代了3.83%的改进,在ETH-XGaze子集上领先11.59%,大大超过了现有的方法。此外,RAF-DB和Affectnet适应性测试的准确率分别为86.4%和60.9%。消融研究证实了SLYKLatent新成分的有效性。这种方法在人机交互方面具有很强的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信