Hang You , Yi Peng , Ting Li , Zhengwen Zhang , Yuanqiang Luo
{"title":"One-step etching fabrication of superhydrophobic CuO/Cu2O/CuCl hybrid films with integrated anti-corrosion, self-cleaning and long-term stability","authors":"Hang You , Yi Peng , Ting Li , Zhengwen Zhang , Yuanqiang Luo","doi":"10.1016/j.progsurf.2025.100778","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of corrosion damage to copper in printed circuit boards (PCBs), electronic components, and other precision parts, the application of superhydrophobic surface technology is utilized to enhance its corrosion resistance properties. In this study, a superhydrophobic CuO/Cu<sub>2</sub>O/CuCl composite surface was fabricated via a facile one-step chemical etching and modification process. The surface morphology was tailored by optimizing microstructural roughness, while the effects of etching time, etchant concentration, and modification duration on wettability were systematically investigated. Various characterization technologies, such as SEM, X-ray diffraction, and X-ray photoelectron spectroscopy, were utilized to examine surface morphologies, crystalline phases, chemical composition, and wettability. The engineered surface exhibited exceptional superhydrophobicity, with a contact angle (CA) of 161.4 ± 0.3° and a sliding angle (SA) below 3°. Electrochemical assessments revealed outstanding corrosion inhibition efficiency (99.98 %) in 3.5 wt% NaCl solution, corroborated by post-immersion corrosion morphology analysis. Furthermore, the coating demonstrated robust self-cleaning functionality and sustained superhydrophobicity for over 360 days under ambient conditions, highlighting its potential for real-world applications.</div></div>","PeriodicalId":416,"journal":{"name":"Progress in Surface Science","volume":"100 2","pages":"Article 100778"},"PeriodicalIF":8.7000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Surface Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079681625000127","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of corrosion damage to copper in printed circuit boards (PCBs), electronic components, and other precision parts, the application of superhydrophobic surface technology is utilized to enhance its corrosion resistance properties. In this study, a superhydrophobic CuO/Cu2O/CuCl composite surface was fabricated via a facile one-step chemical etching and modification process. The surface morphology was tailored by optimizing microstructural roughness, while the effects of etching time, etchant concentration, and modification duration on wettability were systematically investigated. Various characterization technologies, such as SEM, X-ray diffraction, and X-ray photoelectron spectroscopy, were utilized to examine surface morphologies, crystalline phases, chemical composition, and wettability. The engineered surface exhibited exceptional superhydrophobicity, with a contact angle (CA) of 161.4 ± 0.3° and a sliding angle (SA) below 3°. Electrochemical assessments revealed outstanding corrosion inhibition efficiency (99.98 %) in 3.5 wt% NaCl solution, corroborated by post-immersion corrosion morphology analysis. Furthermore, the coating demonstrated robust self-cleaning functionality and sustained superhydrophobicity for over 360 days under ambient conditions, highlighting its potential for real-world applications.
期刊介绍:
Progress in Surface Science publishes progress reports and review articles by invited authors of international stature. The papers are aimed at surface scientists and cover various aspects of surface science. Papers in the new section Progress Highlights, are more concise and general at the same time, and are aimed at all scientists. Because of the transdisciplinary nature of surface science, topics are chosen for their timeliness from across the wide spectrum of scientific and engineering subjects. The journal strives to promote the exchange of ideas between surface scientists in the various areas. Authors are encouraged to write articles that are of relevance and interest to both established surface scientists and newcomers in the field.