{"title":"Regularity for infinitely degenerate inhomogenous elliptic equations, Part I: The Moser Method","authors":"Lyudmila Korobenko , Cristian Rios , Eric Sawyer , Ruipeng Shen","doi":"10.1016/j.na.2025.113888","DOIUrl":null,"url":null,"abstract":"<div><div>We show that if <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is equipped with a certain non-doubling metric and an Orlicz-Sobolev inequality holds for a special family of Young functions <span><math><mi>Φ</mi></math></span>, then weak solutions to quasilinear infinitely degenerate elliptic equations of the form <span><math><mrow><mo>−</mo><mi>div</mi><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>u</mi></mrow></mfenced><mo>∇</mo><mi>u</mi><mo>=</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><msub><mrow><mi>div</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span> are locally bounded. This is obtained by the implementation of a Moser iteration method, what constitutes the first instance of such technique applied to infinite degenerate equations. The results presented here partially extend previously known estimates for solutions of similar equations in which the right hand side does not have a drift term. We also obtain bounds for small negative powers of nonnegative solutions, which will be applied in a subsequent paper to prove continuity of solutions. We also provide examples of geometries in which our abstract theorem is applicable. We consider the family of functions <span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>σ</mi></mrow></msub><mfenced><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><msup><mrow><mfenced><mrow><msup><mrow><mo>ln</mo></mrow><mrow><mfenced><mrow><mi>k</mi></mrow></mfenced></mrow></msup><mfrac><mrow><mn>1</mn></mrow><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow></mfrac></mrow></mfenced></mrow><mrow><mi>σ</mi></mrow></msup></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>k</mi><mo>∈</mo><mi>N</mi><mo>,</mo><mspace></mspace><mi>σ</mi><mo>></mo><mn>0</mn><mo>,</mo><mspace></mspace><mspace></mspace><mo>−</mo><mi>∞</mi><mo><</mo><mi>x</mi><mo><</mo><mi>∞</mi><mo>,</mo></mrow></math></span> infinitely degenerate at the origin, and show that all weak solutions to <span><math><mrow><mo>−</mo><mi>div</mi><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>u</mi></mrow></mfenced><mi>∇</mi><mi>u</mi><mo>=</mo><mi>ϕ</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>div</mi></mrow><mrow><mi>A</mi></mrow></msub><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi></mrow></mfenced><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mi>A</mi><mfenced><mrow><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>z</mi></mrow></mfenced><mo>∼</mo><mfenced><mrow><mtable><mtr><mtd><mn>1</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>,</mo><mi>σ</mi></mrow></msub><msup><mrow><mfenced><mrow><mi>x</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mtd></mtr></mtable></mrow></mfenced><mo>,</mo></mrow></math></span> with rough data <span><math><mrow><mi>A</mi><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mover><mrow><mi>ϕ</mi></mrow><mo>→</mo></mover></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, are locally bounded when <span><math><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mn>0</mn><mo><</mo><mi>σ</mi><mo><</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"261 ","pages":"Article 113888"},"PeriodicalIF":1.3000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001427","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that if is equipped with a certain non-doubling metric and an Orlicz-Sobolev inequality holds for a special family of Young functions , then weak solutions to quasilinear infinitely degenerate elliptic equations of the form are locally bounded. This is obtained by the implementation of a Moser iteration method, what constitutes the first instance of such technique applied to infinite degenerate equations. The results presented here partially extend previously known estimates for solutions of similar equations in which the right hand side does not have a drift term. We also obtain bounds for small negative powers of nonnegative solutions, which will be applied in a subsequent paper to prove continuity of solutions. We also provide examples of geometries in which our abstract theorem is applicable. We consider the family of functions infinitely degenerate at the origin, and show that all weak solutions to with rough data , are locally bounded when and .
期刊介绍:
Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.