{"title":"A quantum speedup algorithm for TSP based on quantum dynamic programming with very few qubits","authors":"Xujun Bai , Yun Shang","doi":"10.1016/j.tcs.2025.115423","DOIUrl":null,"url":null,"abstract":"<div><div>The Traveling Salesman Problem (TSP) is a classical NP-hard problem that plays a crucial role in combinatorial optimization. In this paper, we are interested in the quantum search framework for the TSP because it has robust theoretical guarantees. However, we need to first search for all Hamiltonian cycles from a very large solution space, which greatly weakens the advantage of quantum search algorithms. To address this issue, one can first prepare a superposition state of all feasible solutions, and then amplify the amplitude of the optimal solution from it. We propose a quantum algorithm to generate the uniform superposition state of all N-length Hamiltonian cycles as an initial state within polynomial gate complexity based on pure quantum dynamic programming with very few ancillary qubits, which achieves exponential acceleration compared to the previous initial state preparation algorithm. As a result, we realized the theoretical minimum query complexity of quantum search algorithms for a general TSP. Compared to some algorithms that theoretically have lower query complexities but lack practical implementation solutions, our algorithm has feasible circuit implementation.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1052 ","pages":"Article 115423"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397525003615","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The Traveling Salesman Problem (TSP) is a classical NP-hard problem that plays a crucial role in combinatorial optimization. In this paper, we are interested in the quantum search framework for the TSP because it has robust theoretical guarantees. However, we need to first search for all Hamiltonian cycles from a very large solution space, which greatly weakens the advantage of quantum search algorithms. To address this issue, one can first prepare a superposition state of all feasible solutions, and then amplify the amplitude of the optimal solution from it. We propose a quantum algorithm to generate the uniform superposition state of all N-length Hamiltonian cycles as an initial state within polynomial gate complexity based on pure quantum dynamic programming with very few ancillary qubits, which achieves exponential acceleration compared to the previous initial state preparation algorithm. As a result, we realized the theoretical minimum query complexity of quantum search algorithms for a general TSP. Compared to some algorithms that theoretically have lower query complexities but lack practical implementation solutions, our algorithm has feasible circuit implementation.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.