ArtInsight: A detailed dataset for detecting deterioration in easel paintings

IF 1 Q3 MULTIDISCIPLINARY SCIENCES
Francisco M. Garcia-Moreno , Jose Manuel del Castillo de la Fuente , Luis Rodrigo Rodríguez-Simón , María Visitación Hurtado-Torres
{"title":"ArtInsight: A detailed dataset for detecting deterioration in easel paintings","authors":"Francisco M. Garcia-Moreno ,&nbsp;Jose Manuel del Castillo de la Fuente ,&nbsp;Luis Rodrigo Rodríguez-Simón ,&nbsp;María Visitación Hurtado-Torres","doi":"10.1016/j.dib.2025.111811","DOIUrl":null,"url":null,"abstract":"<div><div>ArtInsight is an innovative dataset designed to detect deterioration in fine art, specifically easel paintings. The dataset includes high-resolution images captured at the University of Granada using a digital camera with a 105 mm lens, ISO 125, F5, and a shutter speed of 1/13, and processed for color calibration. Two types of images are featured: those showing stucco technique interventions and those with Lacune from the loss of the Painting Layer (LPL). The VGG Image Annotator was employed for manual damage labeling, with annotations exported in JSON format and labeled for stucco and LPL damages. The dataset comprises 14 images with 2909 distinct damage areas, split into training and validation datasets. Developed using Python 3.7 and fine-tuned on a pre-trained Mask-RCNN model, this dataset demonstrates high accuracy rates (98–100 %) in damage detection. ArtInsight aims to facilitate automated damage detection and foster future research in art conservation and restoration. The dataset is publicly available at <span><span>10.5281/zenodo.8429814</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"61 ","pages":"Article 111811"},"PeriodicalIF":1.0000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925005384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

ArtInsight is an innovative dataset designed to detect deterioration in fine art, specifically easel paintings. The dataset includes high-resolution images captured at the University of Granada using a digital camera with a 105 mm lens, ISO 125, F5, and a shutter speed of 1/13, and processed for color calibration. Two types of images are featured: those showing stucco technique interventions and those with Lacune from the loss of the Painting Layer (LPL). The VGG Image Annotator was employed for manual damage labeling, with annotations exported in JSON format and labeled for stucco and LPL damages. The dataset comprises 14 images with 2909 distinct damage areas, split into training and validation datasets. Developed using Python 3.7 and fine-tuned on a pre-trained Mask-RCNN model, this dataset demonstrates high accuracy rates (98–100 %) in damage detection. ArtInsight aims to facilitate automated damage detection and foster future research in art conservation and restoration. The dataset is publicly available at 10.5281/zenodo.8429814.
ArtInsight:用于检测架上画作劣化的详细数据集
ArtInsight是一个创新的数据集,旨在检测美术,特别是架上绘画的恶化。该数据集包括在格拉纳达大学使用105毫米镜头的数码相机拍摄的高分辨率图像,ISO 125, F5,快门速度为1/13,并进行了色彩校准处理。两种类型的图像具有特色:显示灰泥技术干预的图像和由于油漆层(LPL)丢失而导致的Lacune图像。使用VGG Image Annotator进行人工损伤标注,以JSON格式导出标注,对灰泥和LPL损伤进行标注。该数据集包括14幅图像,包含2909个不同的损伤区域,分为训练和验证数据集。使用Python 3.7开发并在预训练的Mask-RCNN模型上进行微调,该数据集在损伤检测方面显示出很高的准确率(98 - 100%)。ArtInsight旨在促进自动损伤检测,并促进艺术品保护和修复的未来研究。该数据集可在10.5281/zenodo.8429814公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信