Positionally restricted masked knowledge graph completion via multi-head mutual attention

Qiang Yu , Liang Bao , Peng Nie , Lei Zuo
{"title":"Positionally restricted masked knowledge graph completion via multi-head mutual attention","authors":"Qiang Yu ,&nbsp;Liang Bao ,&nbsp;Peng Nie ,&nbsp;Lei Zuo","doi":"10.1016/j.jiixd.2025.02.006","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge graph completion aims to enhance the completeness of knowledge graphs by predicting missing links. Link prediction is a common approach for this task, but existing methods, particularly those based on similarity computation, are often computationally expensive, especially for large models. To address this, we propose a novel method, positionally restricted masked knowledge graph completion (PR-MKGC), which reduces inference time by leveraging masked prediction and relying solely on structural information from the knowledge graph, without using textual data. We introduce a multi-head mutual attention mechanism that aggregates neighbor information more effectively, improving the model's ability to predict missing links. Experimental results demonstrate that PR-MKGC outperforms existing models in terms of both predictive performance and inference time on the FB15K-237 dataset.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 3","pages":"Pages 210-222"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715925000095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge graph completion aims to enhance the completeness of knowledge graphs by predicting missing links. Link prediction is a common approach for this task, but existing methods, particularly those based on similarity computation, are often computationally expensive, especially for large models. To address this, we propose a novel method, positionally restricted masked knowledge graph completion (PR-MKGC), which reduces inference time by leveraging masked prediction and relying solely on structural information from the knowledge graph, without using textual data. We introduce a multi-head mutual attention mechanism that aggregates neighbor information more effectively, improving the model's ability to predict missing links. Experimental results demonstrate that PR-MKGC outperforms existing models in terms of both predictive performance and inference time on the FB15K-237 dataset.
基于多头相互关注的位置受限掩码知识图谱补全
知识图谱补全的目的是通过预测缺失环节来提高知识图谱的完备性。链接预测是该任务的常用方法,但是现有的方法,特别是基于相似性计算的方法,通常计算成本很高,特别是对于大型模型。为了解决这个问题,我们提出了一种新的方法,位置限制掩膜知识图补全(PR-MKGC),该方法通过利用掩膜预测和仅依赖知识图中的结构信息来减少推理时间,而不使用文本数据。我们引入了多头相互注意机制,更有效地聚合邻居信息,提高了模型预测缺失链接的能力。实验结果表明,PR-MKGC在FB15K-237数据集上的预测性能和推理时间都优于现有模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信