An efficient machine learning-enhanced DTCO framework for low-power and high-performance circuit design

Mingyang Liu , Zhengguang Tang , Hailong You , Cong Li , Guangxin Guo , Zeyuan Wang , Linying Zhang , Xingming Liu , Yu Wang , Yong Dai , Geng Bai , Xiaoling Lin
{"title":"An efficient machine learning-enhanced DTCO framework for low-power and high-performance circuit design","authors":"Mingyang Liu ,&nbsp;Zhengguang Tang ,&nbsp;Hailong You ,&nbsp;Cong Li ,&nbsp;Guangxin Guo ,&nbsp;Zeyuan Wang ,&nbsp;Linying Zhang ,&nbsp;Xingming Liu ,&nbsp;Yu Wang ,&nbsp;Yong Dai ,&nbsp;Geng Bai ,&nbsp;Xiaoling Lin","doi":"10.1016/j.jiixd.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>The standard design technology co-optimization (DTCO) involves frequent interactions between circuit design and process manufacturing, which requires several months. To assist designers in establishing a bridge between device parameters and circuit metrics efficiently, and provide guidance for parameter optimization in the early stages of circuit design. In this paper, we propose an efficient machine learning (ML)-enhanced DTCO framework. This framework achieves the co-optimization of device parameters and circuit metrics. We select the gate metal work function (WF) as the parameter to validate the effectiveness of our framework. And the ridge regression approach is used to bypass TCAD simulation, compact model extraction and cell library characterization. We reduces time consumption by at least 92% compared to traditional DTCO framework, while ensuring that errors of delay, internal power consumption and leakage power below 4 ps, 0.035 ​mJ, and 0.4 μW, respectively. By adjusting the WF, we achieved a better balance between circuit delay and power consumption. This work contributes to designers exploring a broader design space and achieving a efficient DTCO flow.</div></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"3 3","pages":"Pages 194-209"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715925000010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The standard design technology co-optimization (DTCO) involves frequent interactions between circuit design and process manufacturing, which requires several months. To assist designers in establishing a bridge between device parameters and circuit metrics efficiently, and provide guidance for parameter optimization in the early stages of circuit design. In this paper, we propose an efficient machine learning (ML)-enhanced DTCO framework. This framework achieves the co-optimization of device parameters and circuit metrics. We select the gate metal work function (WF) as the parameter to validate the effectiveness of our framework. And the ridge regression approach is used to bypass TCAD simulation, compact model extraction and cell library characterization. We reduces time consumption by at least 92% compared to traditional DTCO framework, while ensuring that errors of delay, internal power consumption and leakage power below 4 ps, 0.035 ​mJ, and 0.4 μW, respectively. By adjusting the WF, we achieved a better balance between circuit delay and power consumption. This work contributes to designers exploring a broader design space and achieving a efficient DTCO flow.
一种高效的机器学习增强DTCO框架,用于低功耗和高性能电路设计
标准设计技术协同优化(DTCO)涉及电路设计和工艺制造之间的频繁交互,需要数月的时间。协助设计人员有效地在器件参数和电路指标之间建立桥梁,为电路设计初期的参数优化提供指导。在本文中,我们提出了一个高效的机器学习(ML)增强的DTCO框架。该框架实现了器件参数和电路指标的协同优化。我们选择闸门金属功函数(WF)作为参数来验证框架的有效性。脊回归方法可以绕过TCAD仿真、紧凑模型提取和细胞库表征。与传统的DTCO框架相比,我们将时间消耗降低了至少92%,同时确保延迟、内部功耗和泄漏功率的误差分别低于4 ps、0.035 mJ和0.4 μW。通过调整WF,我们在电路延迟和功耗之间取得了更好的平衡。这项工作有助于设计师探索更广阔的设计空间,实现高效的DTCO流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信