The Chow ring of the universal Picard stack over the hyperelliptic locus

IF 1.5 1区 数学 Q1 MATHEMATICS
Hannah Larson
{"title":"The Chow ring of the universal Picard stack over the hyperelliptic locus","authors":"Hannah Larson","doi":"10.1016/j.aim.2025.110412","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> be the universal Picard stack parametrizing degree <em>d</em> line bundles on genus <em>g</em> curves, and let <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be its restriction to locus of hyperelliptic curves <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow></msub><mo>⊂</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. We determine the rational Chow ring of <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> for all <em>d</em> and <em>g</em>. In particular, we prove it is generated by restrictions of tautological classes on <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> and we determine all relations among the restrictions of such classes. We also compute the integral Picard group of <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, completing (and extending the <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant case) prior work of Erman and Wood. As a corollary, we prove that <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is either a trivial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-gerbe over its rigidification, or has Brauer class of order 2, depending on the parity of <span><math><mi>d</mi><mo>−</mo><mi>g</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110412"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500310X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let JgdMg be the universal Picard stack parametrizing degree d line bundles on genus g curves, and let J2,gd be its restriction to locus of hyperelliptic curves H2,gMg. We determine the rational Chow ring of J2,gd for all d and g. In particular, we prove it is generated by restrictions of tautological classes on Jgd and we determine all relations among the restrictions of such classes. We also compute the integral Picard group of J2,gd, completing (and extending the PGL2-equivariant case) prior work of Erman and Wood. As a corollary, we prove that J2,gd is either a trivial Gm-gerbe over its rigidification, or has Brauer class of order 2, depending on the parity of dg.
超椭圆轨迹上的泛Picard叠的Chow环
设Jgd→Mg为g属曲线上参数化d次线束的泛Picard叠,设J2,gd为其对超椭圆曲线H2,g∧Mg轨迹的约束。我们确定了所有d和g的J2,gd的有理Chow环,特别是证明了它是由Jgd上的重言类的限制所生成的,并确定了这些类的限制之间的所有关系。我们还计算了J2,gd的积分Picard群,完成(并推广了pgl2等变情况)Erman和Wood先前的工作。作为推论,根据d -g的宇称,我们证明了J2,gd在其刚性上是平凡的Gm-gerbe,或者具有2阶的Brauer类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信