{"title":"The Chow ring of the universal Picard stack over the hyperelliptic locus","authors":"Hannah Larson","doi":"10.1016/j.aim.2025.110412","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> be the universal Picard stack parametrizing degree <em>d</em> line bundles on genus <em>g</em> curves, and let <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> be its restriction to locus of hyperelliptic curves <span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow></msub><mo>⊂</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>. We determine the rational Chow ring of <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> for all <em>d</em> and <em>g</em>. In particular, we prove it is generated by restrictions of tautological classes on <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> and we determine all relations among the restrictions of such classes. We also compute the integral Picard group of <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span>, completing (and extending the <span><math><msub><mrow><mi>PGL</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant case) prior work of Erman and Wood. As a corollary, we prove that <span><math><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>g</mi></mrow><mrow><mi>d</mi></mrow></msubsup></math></span> is either a trivial <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-gerbe over its rigidification, or has Brauer class of order 2, depending on the parity of <span><math><mi>d</mi><mo>−</mo><mi>g</mi></math></span>.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"479 ","pages":"Article 110412"},"PeriodicalIF":1.5000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000187082500310X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the universal Picard stack parametrizing degree d line bundles on genus g curves, and let be its restriction to locus of hyperelliptic curves . We determine the rational Chow ring of for all d and g. In particular, we prove it is generated by restrictions of tautological classes on and we determine all relations among the restrictions of such classes. We also compute the integral Picard group of , completing (and extending the -equivariant case) prior work of Erman and Wood. As a corollary, we prove that is either a trivial -gerbe over its rigidification, or has Brauer class of order 2, depending on the parity of .
期刊介绍:
Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.