{"title":"The Boltzmann principle in the theory of enzymatic catalysis and conformational mobility of biomolecules","authors":"A.I. Osetsky","doi":"10.1016/j.bpc.2025.107485","DOIUrl":null,"url":null,"abstract":"<div><div>The fluctuation microdeformations of biomolecules have been analyzed on the basis of Boltzmann principle taking into account their internal thermal dynamics. The “active biomolecule - passive medium” model, which is fundamentally different from the Brownian activation models, is considered. In the frame of that model, the exponential dependence of the reaction-rate constant of non-diffusion-controlled biochemical reactions on the dynamic viscosity of the medium has been obtained. The obtained dependencies are used to explain the experimentally observed deviations of the temperature behavior of the reaction-rate constant of enzymatic reactions from the Arrhenius equation and the influence of the medium viscosity on the conformational mobility of biomolecules.</div></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"325 ","pages":"Article 107485"},"PeriodicalIF":3.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462225000973","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The fluctuation microdeformations of biomolecules have been analyzed on the basis of Boltzmann principle taking into account their internal thermal dynamics. The “active biomolecule - passive medium” model, which is fundamentally different from the Brownian activation models, is considered. In the frame of that model, the exponential dependence of the reaction-rate constant of non-diffusion-controlled biochemical reactions on the dynamic viscosity of the medium has been obtained. The obtained dependencies are used to explain the experimentally observed deviations of the temperature behavior of the reaction-rate constant of enzymatic reactions from the Arrhenius equation and the influence of the medium viscosity on the conformational mobility of biomolecules.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.