Multihump fundamental solitons in the multi-component Mel’nikov system

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yong Meng, Muhammad Hamza Rafiq, Ji Lin
{"title":"Multihump fundamental solitons in the multi-component Mel’nikov system","authors":"Yong Meng,&nbsp;Muhammad Hamza Rafiq,&nbsp;Ji Lin","doi":"10.1016/j.chaos.2025.116602","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the multihump fundamental <span><math><mi>N</mi></math></span>-soliton solution for the multi-component Mel’nikov system is derived by combining the Hirota bilinear method with the variable separation approach. In this solution, each short-wave component contains <span><math><mi>N</mi></math></span> arbitrary functions of the variable <span><math><mi>y</mi></math></span>. By assigning different functional forms to these arbitrary functions, various types of multihump soliton solutions, including chaotic, fractal, and folded solitons, can be generated, thereby significantly enhancing the diversity of multihump solitons. Furthermore, the study demonstrates that for the arbitrary functions in the same component of the multihump multi-soliton solution, selecting different functional forms leads to hybrid solutions with solitons of different waveforms, such as dromion-like solitons appearing alongside linear solitons, and curved solitons coexisting with serpentine solitons. This finding provides an effective approach for exploring the interaction dynamics among different types of multihump solitons in nonlinear physics.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"199 ","pages":"Article 116602"},"PeriodicalIF":5.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077925006150","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the multihump fundamental N-soliton solution for the multi-component Mel’nikov system is derived by combining the Hirota bilinear method with the variable separation approach. In this solution, each short-wave component contains N arbitrary functions of the variable y. By assigning different functional forms to these arbitrary functions, various types of multihump soliton solutions, including chaotic, fractal, and folded solitons, can be generated, thereby significantly enhancing the diversity of multihump solitons. Furthermore, the study demonstrates that for the arbitrary functions in the same component of the multihump multi-soliton solution, selecting different functional forms leads to hybrid solutions with solitons of different waveforms, such as dromion-like solitons appearing alongside linear solitons, and curved solitons coexisting with serpentine solitons. This finding provides an effective approach for exploring the interaction dynamics among different types of multihump solitons in nonlinear physics.
多分量梅尔尼科夫系统中的多驼峰基本孤子
本文将Hirota双线性方法与变量分离方法相结合,导出了多分量Mel 'nikov系统的多峰基本n孤子解。在该解中,每个短波分量包含变量y的N个任意函数,通过赋予这些任意函数不同的函数形式,可以生成各种类型的多驼峰孤子解,包括混沌孤子、分形孤子和折叠孤子,从而显著增强了多驼峰孤子的多样性。此外,研究表明,对于多驼峰多孤子解的同一分量中的任意函数,选择不同的函数形式会导致不同波形孤子的混合解,例如类激子孤子与线性孤子共存,以及弯曲孤子与蛇形孤子共存。这一发现为探索非线性物理中不同类型多驼峰孤子之间的相互作用动力学提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信