Optimizing photovoltaic performance: Data-driven maximum power point prediction via advanced regression models

Q3 Mathematics
Maissa Farhat , Azzeddine Dekhane , Abdelhak Djellad , Maen Takruri , Aws Al-Qaisi , Oscar Barambones
{"title":"Optimizing photovoltaic performance: Data-driven maximum power point prediction via advanced regression models","authors":"Maissa Farhat ,&nbsp;Azzeddine Dekhane ,&nbsp;Abdelhak Djellad ,&nbsp;Maen Takruri ,&nbsp;Aws Al-Qaisi ,&nbsp;Oscar Barambones","doi":"10.1016/j.rico.2025.100586","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate prediction of the Maximum Power Point (PMPP) in photovoltaic (PV) systems is critical for optimizing energy yield and enhancing solar energy harvesting efficiency. This study explores the application of data-driven methods to improve PMPP prediction, utilizing advanced regression techniques such as Ridge Regression, Lasso Regression, Decision Tree Regression, and Random Forest Regression. By analyzing a dataset of irradiance, temperature, and PMPP measurements, the research compares the performance of these models in capturing complex nonlinear relationships between key variables. Results indicate that tree-based models, particularly Random Forest Regression, outperform linear models, demonstrating superior predictive accuracy and robustness. Feature importance analysis further highlights the dominant influence of irradiance (GPOA) on PMPP, emphasizing the value of precise irradiance data. These findings underscore the potential of machine learning techniques in optimizing PV system performance. Future research should focus on integrating additional features, such as atmospheric conditions and panel characteristics, and exploring deep learning methods to enhance prediction accuracy further.</div></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"20 ","pages":"Article 100586"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720725000724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate prediction of the Maximum Power Point (PMPP) in photovoltaic (PV) systems is critical for optimizing energy yield and enhancing solar energy harvesting efficiency. This study explores the application of data-driven methods to improve PMPP prediction, utilizing advanced regression techniques such as Ridge Regression, Lasso Regression, Decision Tree Regression, and Random Forest Regression. By analyzing a dataset of irradiance, temperature, and PMPP measurements, the research compares the performance of these models in capturing complex nonlinear relationships between key variables. Results indicate that tree-based models, particularly Random Forest Regression, outperform linear models, demonstrating superior predictive accuracy and robustness. Feature importance analysis further highlights the dominant influence of irradiance (GPOA) on PMPP, emphasizing the value of precise irradiance data. These findings underscore the potential of machine learning techniques in optimizing PV system performance. Future research should focus on integrating additional features, such as atmospheric conditions and panel characteristics, and exploring deep learning methods to enhance prediction accuracy further.
优化光伏性能:基于先进回归模型的数据驱动最大功率点预测
准确预测光伏发电系统的最大功率点(PMPP)对于优化发电效果和提高太阳能收集效率至关重要。本研究利用岭回归、Lasso回归、决策树回归和随机森林回归等先进的回归技术,探讨了数据驱动方法在改善PMPP预测中的应用。通过分析辐照度、温度和PMPP测量数据集,该研究比较了这些模型在捕获关键变量之间复杂非线性关系方面的性能。结果表明,基于树的模型,特别是随机森林回归,优于线性模型,表现出更高的预测精度和稳健性。特征重要性分析进一步突出了辐照度(GPOA)对PMPP的主导影响,强调了精确辐照度数据的价值。这些发现强调了机器学习技术在优化光伏系统性能方面的潜力。未来的研究应着眼于整合额外的特征,如大气条件和面板特征,并探索深度学习方法,以进一步提高预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信