New Restricted Isometry Property Analysis for $\ell_{1}$-$\alpha\ell_{2}$ Minimization

IF 5.8 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Haifeng Li;Leiyan Guo;Jinming Wen
{"title":"New Restricted Isometry Property Analysis for $\\ell_{1}$-$\\alpha\\ell_{2}$ Minimization","authors":"Haifeng Li;Leiyan Guo;Jinming Wen","doi":"10.1109/TSP.2025.3582921","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the <inline-formula><tex-math>$\\ell_{1}$</tex-math></inline-formula>-<inline-formula><tex-math>$\\alpha\\ell_{2}$</tex-math></inline-formula> minimization method for <inline-formula><tex-math>$\\alpha\\in(0,2]$</tex-math></inline-formula>. Specifically, we present sparse signal recovery conditions under two types of noise: <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-bounded noise (<inline-formula><tex-math>$\\|\\mathbf{v}\\|_{2}\\,{\\boldsymbol\\leq}\\,\\epsilon$</tex-math></inline-formula> for some constant <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>) and <inline-formula><tex-math>$\\ell_{\\boldsymbol\\infty}$</tex-math></inline-formula>-bounded noise (<inline-formula><tex-math>$\\|\\mathbf{A}^{T}\\mathbf{v}\\|_{\\boldsymbol\\infty}\\,{\\boldsymbol\\leq}\\,\\epsilon$</tex-math></inline-formula> for some constant <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>). First, based on the RIP framework, we provide a new theoretical guarantee for the successful recovery of sparse signals in the presence of noise when <inline-formula><tex-math>$\\alpha\\,{\\boldsymbol\\in}\\,(0,1]$</tex-math></inline-formula>, and show that our results are superior to existing ones. Second, we extend the range of <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula> to <inline-formula><tex-math>$(1,2]$</tex-math></inline-formula> and provide a new theoretical guarantee for sparse signal recovery under the RIP framework. Finally, numerical experiments demonstrate that the recovery success rate for <inline-formula><tex-math>$\\alpha\\,{\\boldsymbol\\in}\\,(1,2]$</tex-math></inline-formula> is higher than that for <inline-formula><tex-math>$\\alpha\\,{\\boldsymbol\\in}\\,(0,1]$</tex-math></inline-formula>.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"2787-2802"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11049950/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the $\ell_{1}$-$\alpha\ell_{2}$ minimization method for $\alpha\in(0,2]$. Specifically, we present sparse signal recovery conditions under two types of noise: $\ell_{2}$-bounded noise ($\|\mathbf{v}\|_{2}\,{\boldsymbol\leq}\,\epsilon$ for some constant $\epsilon$) and $\ell_{\boldsymbol\infty}$-bounded noise ($\|\mathbf{A}^{T}\mathbf{v}\|_{\boldsymbol\infty}\,{\boldsymbol\leq}\,\epsilon$ for some constant $\epsilon$). First, based on the RIP framework, we provide a new theoretical guarantee for the successful recovery of sparse signals in the presence of noise when $\alpha\,{\boldsymbol\in}\,(0,1]$, and show that our results are superior to existing ones. Second, we extend the range of $\alpha$ to $(1,2]$ and provide a new theoretical guarantee for sparse signal recovery under the RIP framework. Finally, numerical experiments demonstrate that the recovery success rate for $\alpha\,{\boldsymbol\in}\,(1,2]$ is higher than that for $\alpha\,{\boldsymbol\in}\,(0,1]$.
1-α 2最小化的新限制等距性质分析
本文考虑了$\alpha\in(0,2]$的$\ell_{1}$ - $\alpha\ell_{2}$最小化方法。具体来说,我们提出了两种类型噪声下的稀疏信号恢复条件:$\ell_{2}$ -有界噪声($\|\mathbf{v}\|_{2}\,{\boldsymbol\leq}\,\epsilon$对于某些常数$\epsilon$)和$\ell_{\boldsymbol\infty}$ -有界噪声($\|\mathbf{A}^{T}\mathbf{v}\|_{\boldsymbol\infty}\,{\boldsymbol\leq}\,\epsilon$对于某些常数$\epsilon$)。首先,基于RIP框架,我们为$\alpha\,{\boldsymbol\in}\,(0,1]$存在噪声的稀疏信号的成功恢复提供了新的理论保证,并证明了我们的结果优于现有的结果。其次,将$\alpha$的范围扩展到$(1,2]$,为RIP框架下的稀疏信号恢复提供了新的理论保障。最后,数值实验表明,$\alpha\,{\boldsymbol\in}\,(1,2]$的恢复成功率高于$\alpha\,{\boldsymbol\in}\,(0,1]$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信