{"title":"New Restricted Isometry Property Analysis for $\\ell_{1}$-$\\alpha\\ell_{2}$ Minimization","authors":"Haifeng Li;Leiyan Guo;Jinming Wen","doi":"10.1109/TSP.2025.3582921","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the <inline-formula><tex-math>$\\ell_{1}$</tex-math></inline-formula>-<inline-formula><tex-math>$\\alpha\\ell_{2}$</tex-math></inline-formula> minimization method for <inline-formula><tex-math>$\\alpha\\in(0,2]$</tex-math></inline-formula>. Specifically, we present sparse signal recovery conditions under two types of noise: <inline-formula><tex-math>$\\ell_{2}$</tex-math></inline-formula>-bounded noise (<inline-formula><tex-math>$\\|\\mathbf{v}\\|_{2}\\,{\\boldsymbol\\leq}\\,\\epsilon$</tex-math></inline-formula> for some constant <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>) and <inline-formula><tex-math>$\\ell_{\\boldsymbol\\infty}$</tex-math></inline-formula>-bounded noise (<inline-formula><tex-math>$\\|\\mathbf{A}^{T}\\mathbf{v}\\|_{\\boldsymbol\\infty}\\,{\\boldsymbol\\leq}\\,\\epsilon$</tex-math></inline-formula> for some constant <inline-formula><tex-math>$\\epsilon$</tex-math></inline-formula>). First, based on the RIP framework, we provide a new theoretical guarantee for the successful recovery of sparse signals in the presence of noise when <inline-formula><tex-math>$\\alpha\\,{\\boldsymbol\\in}\\,(0,1]$</tex-math></inline-formula>, and show that our results are superior to existing ones. Second, we extend the range of <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula> to <inline-formula><tex-math>$(1,2]$</tex-math></inline-formula> and provide a new theoretical guarantee for sparse signal recovery under the RIP framework. Finally, numerical experiments demonstrate that the recovery success rate for <inline-formula><tex-math>$\\alpha\\,{\\boldsymbol\\in}\\,(1,2]$</tex-math></inline-formula> is higher than that for <inline-formula><tex-math>$\\alpha\\,{\\boldsymbol\\in}\\,(0,1]$</tex-math></inline-formula>.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"2787-2802"},"PeriodicalIF":5.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11049950/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider the $\ell_{1}$-$\alpha\ell_{2}$ minimization method for $\alpha\in(0,2]$. Specifically, we present sparse signal recovery conditions under two types of noise: $\ell_{2}$-bounded noise ($\|\mathbf{v}\|_{2}\,{\boldsymbol\leq}\,\epsilon$ for some constant $\epsilon$) and $\ell_{\boldsymbol\infty}$-bounded noise ($\|\mathbf{A}^{T}\mathbf{v}\|_{\boldsymbol\infty}\,{\boldsymbol\leq}\,\epsilon$ for some constant $\epsilon$). First, based on the RIP framework, we provide a new theoretical guarantee for the successful recovery of sparse signals in the presence of noise when $\alpha\,{\boldsymbol\in}\,(0,1]$, and show that our results are superior to existing ones. Second, we extend the range of $\alpha$ to $(1,2]$ and provide a new theoretical guarantee for sparse signal recovery under the RIP framework. Finally, numerical experiments demonstrate that the recovery success rate for $\alpha\,{\boldsymbol\in}\,(1,2]$ is higher than that for $\alpha\,{\boldsymbol\in}\,(0,1]$.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.