Fan Huang, Zengli Liu, Yan Song, Ganyu Wang, Anda Shi, Tianli Chen, Shaohui Huang, Shuo Lian, Kangshuai Li, Yongchang Tang, Lijie Zheng, Guoli Sheng, Nuoqi Zhang, Fan Yang, Chang Pan, Weiqiang Jing, Zongli Zhang, Yunfei Xu
{"title":"Bile acids activate cancer-associated fibroblasts and induce an immunosuppressive microenvironment in cholangiocarcinoma","authors":"Fan Huang, Zengli Liu, Yan Song, Ganyu Wang, Anda Shi, Tianli Chen, Shaohui Huang, Shuo Lian, Kangshuai Li, Yongchang Tang, Lijie Zheng, Guoli Sheng, Nuoqi Zhang, Fan Yang, Chang Pan, Weiqiang Jing, Zongli Zhang, Yunfei Xu","doi":"10.1016/j.ccell.2025.05.017","DOIUrl":null,"url":null,"abstract":"Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary tract and characterized with exposure to high levels of bile acids (BAs). Immunotherapies have demonstrated limited efficacy in CCA, but the underlying mechanism remains elusive. In this study, we reveal that the excessive BAs specifically activate GPBAR1 on cancer-associated fibroblasts (CAFs) to express high levels of CXCL10, enhancing epithelial-mesenchymal transition (EMT) and metastasis of CCA cells and creating an immunosuppressive tumor microenvironment (TME) by recruiting neutrophils in CCA. Interestingly, single-cell RNA sequencing analysis demonstrates that CAFs in CCA, but not other cancer types examined, specifically express GPBAR1, a receptor for BAs. GPBAR1-CXCL10 axis inhibition enhances the efficacy of pembrolizumab in multiple CCA preclinical models. High BA levels and upregulated GPBAR1 expression predict poor prognosis and inferior immunotherapy response. In summary, our study reveals an immunosuppressive mechanism of BAs and identifies GPBAR1 and CXCL10 as potential immunotherapeutic targets in CCA.","PeriodicalId":9670,"journal":{"name":"Cancer Cell","volume":"8 1","pages":""},"PeriodicalIF":48.8000,"publicationDate":"2025-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ccell.2025.05.017","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cholangiocarcinoma (CCA) is a highly lethal malignancy originating from the biliary tract and characterized with exposure to high levels of bile acids (BAs). Immunotherapies have demonstrated limited efficacy in CCA, but the underlying mechanism remains elusive. In this study, we reveal that the excessive BAs specifically activate GPBAR1 on cancer-associated fibroblasts (CAFs) to express high levels of CXCL10, enhancing epithelial-mesenchymal transition (EMT) and metastasis of CCA cells and creating an immunosuppressive tumor microenvironment (TME) by recruiting neutrophils in CCA. Interestingly, single-cell RNA sequencing analysis demonstrates that CAFs in CCA, but not other cancer types examined, specifically express GPBAR1, a receptor for BAs. GPBAR1-CXCL10 axis inhibition enhances the efficacy of pembrolizumab in multiple CCA preclinical models. High BA levels and upregulated GPBAR1 expression predict poor prognosis and inferior immunotherapy response. In summary, our study reveals an immunosuppressive mechanism of BAs and identifies GPBAR1 and CXCL10 as potential immunotherapeutic targets in CCA.
期刊介绍:
Cancer Cell is a journal that focuses on promoting major advances in cancer research and oncology. The primary criteria for considering manuscripts are as follows:
Major advances: Manuscripts should provide significant advancements in answering important questions related to naturally occurring cancers.
Translational research: The journal welcomes translational research, which involves the application of basic scientific findings to human health and clinical practice.
Clinical investigations: Cancer Cell is interested in publishing clinical investigations that contribute to establishing new paradigms in the treatment, diagnosis, or prevention of cancers.
Insights into cancer biology: The journal values clinical investigations that provide important insights into cancer biology beyond what has been revealed by preclinical studies.
Mechanism-based proof-of-principle studies: Cancer Cell encourages the publication of mechanism-based proof-of-principle clinical studies, which demonstrate the feasibility of a specific therapeutic approach or diagnostic test.