{"title":"The Dynamic Interactions of m6A Modification and R-Loops: Implications for Genome Stability.","authors":"Nicholas Kim, Hong Sun","doi":"10.3390/epigenomes9020021","DOIUrl":null,"url":null,"abstract":"<p><p>R-loops, three-stranded RNA-DNA hybrid nucleic acid structures, are recognized for their roles in both physiological and pathological processes. Regulation of R-loops is critical for genome stability as disruption of R-loop homeostasis can lead to aberrant gene expression, replication stress, and DNA damage. Recent studies suggest that the RNA modification, N6-methyladenosine (m6A), can modify R-loops and the writers, erasers, and readers of m6A are involved in the dynamic regulation of R-loops. Here, we discuss the reported functions of various m6A regulatory proteins in relation to R-loops, highlighting their distinct roles in recognizing and modulating the formation, stability, and resolution of these structures. We further examine the functional implications of m6A and R-loop interaction in human diseases, with a particular emphasis on their roles in cancer.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"9 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12192009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes9020021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
R-loops, three-stranded RNA-DNA hybrid nucleic acid structures, are recognized for their roles in both physiological and pathological processes. Regulation of R-loops is critical for genome stability as disruption of R-loop homeostasis can lead to aberrant gene expression, replication stress, and DNA damage. Recent studies suggest that the RNA modification, N6-methyladenosine (m6A), can modify R-loops and the writers, erasers, and readers of m6A are involved in the dynamic regulation of R-loops. Here, we discuss the reported functions of various m6A regulatory proteins in relation to R-loops, highlighting their distinct roles in recognizing and modulating the formation, stability, and resolution of these structures. We further examine the functional implications of m6A and R-loop interaction in human diseases, with a particular emphasis on their roles in cancer.