{"title":"The Image Clarity Paradox: Higher CZT SPECT Contrast Does Not Always Translate to Diagnostic Accuracy for Alzheimer's Disease.","authors":"Kiyotaka Nemoto, Bryan J Mathis, Akemi Iwasaka, Kenjiro Nakayama, Tomohiro Kaneta, Tetsuaki Arai","doi":"10.3390/tomography11060061","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background</b>: Recent advances in single-photon emission computed tomography (SPECT) technology, particularly cadmium-zinc-telluride (CZT) detectors, have improved spatial resolution and contrast in cerebral blood flow imaging. This study aimed to investigate whether these improvements translate to enhanced diagnostic accuracy for Alzheimer's disease (AD). <b>Methods</b>: We compared conventional SPECT (eCAM) with CZT SPECT in 29 patients (mean age 60.9 ± 17.6 years, 69% female) with suspected neurodegenerative diseases. <b>Results</b>: Gray matter/white matter contrast was significantly higher in CZT SPECT compared to eCAM (1.615 ± 0.096 vs. 1.458 ± 0.068, <i>p</i> < 0.001). However, diagnostic accuracy for AD did not improve with CZT SPECT. For the participating psychiatrist, sensitivity decreased from 0.750 (eCAM) to 0.625 (CZT), while for the radiologist, specificity dropped from 0.571 (eCAM) to 0.429 (CZT). Overall accuracy slightly decreased for both readers. <b>Conclusions</b>: These findings suggest that while CZT SPECT offers superior image quality, it may not immediately translate to improved diagnostic accuracy for AD. The study highlights the importance of specialized training for clinicians in interpreting higher-resolution CZT SPECT images to fully leverage their potential in neurodegenerative disease diagnosis. Future research should focus on developing standardized training protocols and larger, multi-center studies to validate these findings.</p>","PeriodicalId":51330,"journal":{"name":"Tomography","volume":"11 6","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12196972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/tomography11060061","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recent advances in single-photon emission computed tomography (SPECT) technology, particularly cadmium-zinc-telluride (CZT) detectors, have improved spatial resolution and contrast in cerebral blood flow imaging. This study aimed to investigate whether these improvements translate to enhanced diagnostic accuracy for Alzheimer's disease (AD). Methods: We compared conventional SPECT (eCAM) with CZT SPECT in 29 patients (mean age 60.9 ± 17.6 years, 69% female) with suspected neurodegenerative diseases. Results: Gray matter/white matter contrast was significantly higher in CZT SPECT compared to eCAM (1.615 ± 0.096 vs. 1.458 ± 0.068, p < 0.001). However, diagnostic accuracy for AD did not improve with CZT SPECT. For the participating psychiatrist, sensitivity decreased from 0.750 (eCAM) to 0.625 (CZT), while for the radiologist, specificity dropped from 0.571 (eCAM) to 0.429 (CZT). Overall accuracy slightly decreased for both readers. Conclusions: These findings suggest that while CZT SPECT offers superior image quality, it may not immediately translate to improved diagnostic accuracy for AD. The study highlights the importance of specialized training for clinicians in interpreting higher-resolution CZT SPECT images to fully leverage their potential in neurodegenerative disease diagnosis. Future research should focus on developing standardized training protocols and larger, multi-center studies to validate these findings.
TomographyMedicine-Radiology, Nuclear Medicine and Imaging
CiteScore
2.70
自引率
10.50%
发文量
222
期刊介绍:
TomographyTM publishes basic (technical and pre-clinical) and clinical scientific articles which involve the advancement of imaging technologies. Tomography encompasses studies that use single or multiple imaging modalities including for example CT, US, PET, SPECT, MR and hyperpolarization technologies, as well as optical modalities (i.e. bioluminescence, photoacoustic, endomicroscopy, fiber optic imaging and optical computed tomography) in basic sciences, engineering, preclinical and clinical medicine.
Tomography also welcomes studies involving exploration and refinement of contrast mechanisms and image-derived metrics within and across modalities toward the development of novel imaging probes for image-based feedback and intervention. The use of imaging in biology and medicine provides unparalleled opportunities to noninvasively interrogate tissues to obtain real-time dynamic and quantitative information required for diagnosis and response to interventions and to follow evolving pathological conditions. As multi-modal studies and the complexities of imaging technologies themselves are ever increasing to provide advanced information to scientists and clinicians.
Tomography provides a unique publication venue allowing investigators the opportunity to more precisely communicate integrated findings related to the diverse and heterogeneous features associated with underlying anatomical, physiological, functional, metabolic and molecular genetic activities of normal and diseased tissue. Thus Tomography publishes peer-reviewed articles which involve the broad use of imaging of any tissue and disease type including both preclinical and clinical investigations. In addition, hardware/software along with chemical and molecular probe advances are welcome as they are deemed to significantly contribute towards the long-term goal of improving the overall impact of imaging on scientific and clinical discovery.